Metamath Proof Explorer


Theorem fin23lem26

Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion fin23lem26 S ω ¬ S Fin i ω j S j S i

Proof

Step Hyp Ref Expression
1 breq2 i = j S i j S
2 1 rexbidv i = j S j S i j S j S
3 breq2 i = a j S i j S a
4 3 rexbidv i = a j S j S i j S j S a
5 breq2 i = suc a j S i j S suc a
6 5 rexbidv i = suc a j S j S i j S j S suc a
7 ordom Ord ω
8 simpl S ω ¬ S Fin S ω
9 0fin Fin
10 eleq1 S = S Fin Fin
11 9 10 mpbiri S = S Fin
12 11 necon3bi ¬ S Fin S
13 12 adantl S ω ¬ S Fin S
14 tz7.5 Ord ω S ω S j S S j =
15 7 8 13 14 mp3an2i S ω ¬ S Fin j S S j =
16 en0 j S j S =
17 incom j S = S j
18 17 eqeq1i j S = S j =
19 16 18 bitri j S S j =
20 19 rexbii j S j S j S S j =
21 15 20 sylibr S ω ¬ S Fin j S j S
22 simplrl a ω S ω ¬ S Fin j S j S a S ω
23 omsson ω On
24 22 23 sstrdi a ω S ω ¬ S Fin j S j S a S On
25 24 ssdifssd a ω S ω ¬ S Fin j S j S a S suc j On
26 simplr S ω ¬ S Fin j S ¬ S Fin
27 ssel2 S ω j S j ω
28 onfin2 ω = On Fin
29 inss2 On Fin Fin
30 28 29 eqsstri ω Fin
31 peano2 j ω suc j ω
32 30 31 sselid j ω suc j Fin
33 27 32 syl S ω j S suc j Fin
34 33 adantlr S ω ¬ S Fin j S suc j Fin
35 ssfi suc j Fin S suc j S Fin
36 35 ex suc j Fin S suc j S Fin
37 34 36 syl S ω ¬ S Fin j S S suc j S Fin
38 26 37 mtod S ω ¬ S Fin j S ¬ S suc j
39 ssdif0 S suc j S suc j =
40 39 necon3bbii ¬ S suc j S suc j
41 38 40 sylib S ω ¬ S Fin j S S suc j
42 41 ad2ant2lr a ω S ω ¬ S Fin j S j S a S suc j
43 onint S suc j On S suc j S suc j S suc j
44 25 42 43 syl2anc a ω S ω ¬ S Fin j S j S a S suc j S suc j
45 44 eldifad a ω S ω ¬ S Fin j S j S a S suc j S
46 simprr a ω S ω ¬ S Fin j S j S a j S a
47 en2sn j V a V j a
48 47 el2v j a
49 48 a1i a ω S ω ¬ S Fin j S j S a j a
50 simprl a ω S ω ¬ S Fin j S j S a j S
51 22 50 sseldd a ω S ω ¬ S Fin j S j S a j ω
52 nnord j ω Ord j
53 51 52 syl a ω S ω ¬ S Fin j S j S a Ord j
54 ordirr Ord j ¬ j j
55 elinel1 j j S j j
56 54 55 nsyl Ord j ¬ j j S
57 disjsn j S j = ¬ j j S
58 56 57 sylibr Ord j j S j =
59 53 58 syl a ω S ω ¬ S Fin j S j S a j S j =
60 nnord a ω Ord a
61 ordirr Ord a ¬ a a
62 60 61 syl a ω ¬ a a
63 disjsn a a = ¬ a a
64 62 63 sylibr a ω a a =
65 64 ad2antrr a ω S ω ¬ S Fin j S j S a a a =
66 unen j S a j a j S j = a a = j S j a a
67 46 49 59 65 66 syl22anc a ω S ω ¬ S Fin j S j S a j S j a a
68 simprr a ω S ω ¬ S Fin j S j S a b S b S
69 simplrl a ω S ω ¬ S Fin j S j S a b S S ω
70 69 23 sstrdi a ω S ω ¬ S Fin j S j S a b S S On
71 ordsuc Ord j Ord suc j
72 53 71 sylib a ω S ω ¬ S Fin j S j S a Ord suc j
73 72 adantrr a ω S ω ¬ S Fin j S j S a b S Ord suc j
74 simp2 b S S On Ord suc j S On
75 74 ssdifssd b S S On Ord suc j S suc j On
76 simpl1 b S S On Ord suc j ¬ b suc j b S
77 simpr b S S On Ord suc j ¬ b suc j ¬ b suc j
78 76 77 eldifd b S S On Ord suc j ¬ b suc j b S suc j
79 78 ex b S S On Ord suc j ¬ b suc j b S suc j
80 onnmin S suc j On b S suc j ¬ b S suc j
81 75 79 80 syl6an b S S On Ord suc j ¬ b suc j ¬ b S suc j
82 81 con4d b S S On Ord suc j b S suc j b suc j
83 82 imp b S S On Ord suc j b S suc j b suc j
84 simp3 b S S On Ord suc j Ord suc j
85 ordsucss Ord suc j b suc j suc b suc j
86 84 85 syl b S S On Ord suc j b suc j suc b suc j
87 86 imp b S S On Ord suc j b suc j suc b suc j
88 87 sscond b S S On Ord suc j b suc j S suc j S suc b
89 intss S suc j S suc b S suc b S suc j
90 88 89 syl b S S On Ord suc j b suc j S suc b S suc j
91 simpl2 b S S On Ord suc j b suc j S On
92 ordelon Ord suc j b suc j b On
93 84 92 sylan b S S On Ord suc j b suc j b On
94 onmindif S On b On b S suc b
95 91 93 94 syl2anc b S S On Ord suc j b suc j b S suc b
96 90 95 sseldd b S S On Ord suc j b suc j b S suc j
97 83 96 impbida b S S On Ord suc j b S suc j b suc j
98 68 70 73 97 syl3anc a ω S ω ¬ S Fin j S j S a b S b S suc j b suc j
99 df-suc suc j = j j
100 99 eleq2i b suc j b j j
101 98 100 bitrdi a ω S ω ¬ S Fin j S j S a b S b S suc j b j j
102 101 expr a ω S ω ¬ S Fin j S j S a b S b S suc j b j j
103 102 pm5.32rd a ω S ω ¬ S Fin j S j S a b S suc j b S b j j b S
104 elin b S suc j S b S suc j b S
105 elin b j j S b j j b S
106 103 104 105 3bitr4g a ω S ω ¬ S Fin j S j S a b S suc j S b j j S
107 106 eqrdv a ω S ω ¬ S Fin j S j S a S suc j S = j j S
108 indir j j S = j S j S
109 107 108 eqtrdi a ω S ω ¬ S Fin j S j S a S suc j S = j S j S
110 snssi j S j S
111 df-ss j S j S = j
112 110 111 sylib j S j S = j
113 112 uneq2d j S j S j S = j S j
114 113 ad2antrl a ω S ω ¬ S Fin j S j S a j S j S = j S j
115 109 114 eqtrd a ω S ω ¬ S Fin j S j S a S suc j S = j S j
116 df-suc suc a = a a
117 116 a1i a ω S ω ¬ S Fin j S j S a suc a = a a
118 67 115 117 3brtr4d a ω S ω ¬ S Fin j S j S a S suc j S suc a
119 ineq1 b = S suc j b S = S suc j S
120 119 breq1d b = S suc j b S suc a S suc j S suc a
121 120 rspcev S suc j S S suc j S suc a b S b S suc a
122 45 118 121 syl2anc a ω S ω ¬ S Fin j S j S a b S b S suc a
123 122 rexlimdvaa a ω S ω ¬ S Fin j S j S a b S b S suc a
124 ineq1 b = j b S = j S
125 124 breq1d b = j b S suc a j S suc a
126 125 cbvrexvw b S b S suc a j S j S suc a
127 123 126 syl6ib a ω S ω ¬ S Fin j S j S a j S j S suc a
128 127 ex a ω S ω ¬ S Fin j S j S a j S j S suc a
129 2 4 6 21 128 finds2 i ω S ω ¬ S Fin j S j S i
130 129 impcom S ω ¬ S Fin i ω j S j S i