Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem22.b |
|
2 |
|
ordom |
|
3 |
|
ordwe |
|
4 |
|
weso |
|
5 |
2 3 4
|
mp2b |
|
6 |
5
|
a1i |
|
7 |
|
sopo |
|
8 |
5 7
|
ax-mp |
|
9 |
|
poss |
|
10 |
8 9
|
mpi |
|
11 |
10
|
adantr |
|
12 |
1
|
fin23lem22 |
|
13 |
|
f1ofo |
|
14 |
12 13
|
syl |
|
15 |
|
nnsdomel |
|
16 |
15
|
adantl |
|
17 |
16
|
biimpd |
|
18 |
|
fin23lem23 |
|
19 |
18
|
adantrr |
|
20 |
|
ineq1 |
|
21 |
20
|
breq1d |
|
22 |
21
|
cbvreuvw |
|
23 |
19 22
|
sylib |
|
24 |
|
nfv |
|
25 |
21
|
cbvriotavw |
|
26 |
|
ineq1 |
|
27 |
26
|
breq1d |
|
28 |
24 25 27
|
riotaprop |
|
29 |
23 28
|
syl |
|
30 |
29
|
simprd |
|
31 |
30
|
adantrr |
|
32 |
|
simprr |
|
33 |
|
fin23lem23 |
|
34 |
33
|
adantrl |
|
35 |
20
|
breq1d |
|
36 |
35
|
cbvreuvw |
|
37 |
34 36
|
sylib |
|
38 |
|
nfv |
|
39 |
35
|
cbvriotavw |
|
40 |
|
ineq1 |
|
41 |
40
|
breq1d |
|
42 |
38 39 41
|
riotaprop |
|
43 |
37 42
|
syl |
|
44 |
43
|
simprd |
|
45 |
44
|
ensymd |
|
46 |
45
|
adantrr |
|
47 |
|
sdomentr |
|
48 |
32 46 47
|
syl2anc |
|
49 |
|
ensdomtr |
|
50 |
31 48 49
|
syl2anc |
|
51 |
50
|
expr |
|
52 |
|
simpll |
|
53 |
|
omsson |
|
54 |
52 53
|
sstrdi |
|
55 |
29
|
simpld |
|
56 |
54 55
|
sseldd |
|
57 |
43
|
simpld |
|
58 |
54 57
|
sseldd |
|
59 |
|
onsdominel |
|
60 |
59
|
3expia |
|
61 |
56 58 60
|
syl2anc |
|
62 |
17 51 61
|
3syld |
|
63 |
|
breq2 |
|
64 |
63
|
riotabidv |
|
65 |
|
simprl |
|
66 |
1 64 65 55
|
fvmptd3 |
|
67 |
|
breq2 |
|
68 |
67
|
riotabidv |
|
69 |
|
simprr |
|
70 |
1 68 69 57
|
fvmptd3 |
|
71 |
66 70
|
eleq12d |
|
72 |
62 71
|
sylibrd |
|
73 |
|
epel |
|
74 |
|
fvex |
|
75 |
74
|
epeli |
|
76 |
72 73 75
|
3imtr4g |
|
77 |
76
|
ralrimivva |
|
78 |
|
soisoi |
|
79 |
6 11 14 77 78
|
syl22anc |
|