Metamath Proof Explorer


Theorem fin23lem28

Description: Lemma for fin23 . The residual is also one-to-one. This preserves the induction invariant. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.b P = v ω | ran U t v
fin23lem.c Q = w ω ι x P | x P w
fin23lem.d R = w ω ι x ω P | x ω P w
fin23lem.e Z = if P Fin t R z P t z ran U Q
Assertion fin23lem28 t : ω 1-1 V Z : ω 1-1 V

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
3 fin23lem.b P = v ω | ran U t v
4 fin23lem.c Q = w ω ι x P | x P w
5 fin23lem.d R = w ω ι x ω P | x ω P w
6 fin23lem.e Z = if P Fin t R z P t z ran U Q
7 eqif Z = if P Fin t R z P t z ran U Q P Fin Z = t R ¬ P Fin Z = z P t z ran U Q
8 6 7 mpbi P Fin Z = t R ¬ P Fin Z = z P t z ran U Q
9 difss ω P ω
10 ominf ¬ ω Fin
11 3 ssrab3 P ω
12 undif P ω P ω P = ω
13 11 12 mpbi P ω P = ω
14 unfi P Fin ω P Fin P ω P Fin
15 13 14 eqeltrrid P Fin ω P Fin ω Fin
16 15 ex P Fin ω P Fin ω Fin
17 10 16 mtoi P Fin ¬ ω P Fin
18 5 fin23lem22 ω P ω ¬ ω P Fin R : ω 1-1 onto ω P
19 9 17 18 sylancr P Fin R : ω 1-1 onto ω P
20 19 adantl t : ω 1-1 V P Fin R : ω 1-1 onto ω P
21 f1of1 R : ω 1-1 onto ω P R : ω 1-1 ω P
22 f1ss R : ω 1-1 ω P ω P ω R : ω 1-1 ω
23 9 22 mpan2 R : ω 1-1 ω P R : ω 1-1 ω
24 20 21 23 3syl t : ω 1-1 V P Fin R : ω 1-1 ω
25 f1co t : ω 1-1 V R : ω 1-1 ω t R : ω 1-1 V
26 24 25 syldan t : ω 1-1 V P Fin t R : ω 1-1 V
27 f1eq1 Z = t R Z : ω 1-1 V t R : ω 1-1 V
28 26 27 syl5ibrcom t : ω 1-1 V P Fin Z = t R Z : ω 1-1 V
29 28 impr t : ω 1-1 V P Fin Z = t R Z : ω 1-1 V
30 fvex t z V
31 30 difexi t z ran U V
32 31 rgenw z P t z ran U V
33 eqid z P t z ran U = z P t z ran U
34 33 fmpt z P t z ran U V z P t z ran U : P V
35 32 34 mpbi z P t z ran U : P V
36 35 a1i t : ω 1-1 V z P t z ran U : P V
37 fveq2 z = a t z = t a
38 37 difeq1d z = a t z ran U = t a ran U
39 fvex t a V
40 39 difexi t a ran U V
41 38 33 40 fvmpt a P z P t z ran U a = t a ran U
42 41 ad2antrl t : ω 1-1 V a P b P z P t z ran U a = t a ran U
43 fveq2 z = b t z = t b
44 43 difeq1d z = b t z ran U = t b ran U
45 fvex t b V
46 45 difexi t b ran U V
47 44 33 46 fvmpt b P z P t z ran U b = t b ran U
48 47 ad2antll t : ω 1-1 V a P b P z P t z ran U b = t b ran U
49 42 48 eqeq12d t : ω 1-1 V a P b P z P t z ran U a = z P t z ran U b t a ran U = t b ran U
50 uneq2 t a ran U = t b ran U ran U t a ran U = ran U t b ran U
51 fveq2 v = a t v = t a
52 51 sseq2d v = a ran U t v ran U t a
53 52 3 elrab2 a P a ω ran U t a
54 53 simprbi a P ran U t a
55 54 ad2antrl t : ω 1-1 V a P b P ran U t a
56 undif ran U t a ran U t a ran U = t a
57 55 56 sylib t : ω 1-1 V a P b P ran U t a ran U = t a
58 fveq2 v = b t v = t b
59 58 sseq2d v = b ran U t v ran U t b
60 59 3 elrab2 b P b ω ran U t b
61 60 simprbi b P ran U t b
62 61 ad2antll t : ω 1-1 V a P b P ran U t b
63 undif ran U t b ran U t b ran U = t b
64 62 63 sylib t : ω 1-1 V a P b P ran U t b ran U = t b
65 57 64 eqeq12d t : ω 1-1 V a P b P ran U t a ran U = ran U t b ran U t a = t b
66 50 65 syl5ib t : ω 1-1 V a P b P t a ran U = t b ran U t a = t b
67 11 sseli a P a ω
68 11 sseli b P b ω
69 67 68 anim12i a P b P a ω b ω
70 f1fveq t : ω 1-1 V a ω b ω t a = t b a = b
71 69 70 sylan2 t : ω 1-1 V a P b P t a = t b a = b
72 66 71 sylibd t : ω 1-1 V a P b P t a ran U = t b ran U a = b
73 49 72 sylbid t : ω 1-1 V a P b P z P t z ran U a = z P t z ran U b a = b
74 73 ralrimivva t : ω 1-1 V a P b P z P t z ran U a = z P t z ran U b a = b
75 dff13 z P t z ran U : P 1-1 V z P t z ran U : P V a P b P z P t z ran U a = z P t z ran U b a = b
76 36 74 75 sylanbrc t : ω 1-1 V z P t z ran U : P 1-1 V
77 4 fin23lem22 P ω ¬ P Fin Q : ω 1-1 onto P
78 f1of1 Q : ω 1-1 onto P Q : ω 1-1 P
79 77 78 syl P ω ¬ P Fin Q : ω 1-1 P
80 11 79 mpan ¬ P Fin Q : ω 1-1 P
81 f1co z P t z ran U : P 1-1 V Q : ω 1-1 P z P t z ran U Q : ω 1-1 V
82 76 80 81 syl2an t : ω 1-1 V ¬ P Fin z P t z ran U Q : ω 1-1 V
83 f1eq1 Z = z P t z ran U Q Z : ω 1-1 V z P t z ran U Q : ω 1-1 V
84 82 83 syl5ibrcom t : ω 1-1 V ¬ P Fin Z = z P t z ran U Q Z : ω 1-1 V
85 84 impr t : ω 1-1 V ¬ P Fin Z = z P t z ran U Q Z : ω 1-1 V
86 29 85 jaodan t : ω 1-1 V P Fin Z = t R ¬ P Fin Z = z P t z ran U Q Z : ω 1-1 V
87 8 86 mpan2 t : ω 1-1 V Z : ω 1-1 V