Metamath Proof Explorer


Theorem fin23lem29

Description: Lemma for fin23 . The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.b P = v ω | ran U t v
fin23lem.c Q = w ω ι x P | x P w
fin23lem.d R = w ω ι x ω P | x ω P w
fin23lem.e Z = if P Fin t R z P t z ran U Q
Assertion fin23lem29 ran Z ran t

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
3 fin23lem.b P = v ω | ran U t v
4 fin23lem.c Q = w ω ι x P | x P w
5 fin23lem.d R = w ω ι x ω P | x ω P w
6 fin23lem.e Z = if P Fin t R z P t z ran U Q
7 eqif Z = if P Fin t R z P t z ran U Q P Fin Z = t R ¬ P Fin Z = z P t z ran U Q
8 7 biimpi Z = if P Fin t R z P t z ran U Q P Fin Z = t R ¬ P Fin Z = z P t z ran U Q
9 rneq Z = t R ran Z = ran t R
10 9 unieqd Z = t R ran Z = ran t R
11 rncoss ran t R ran t
12 11 unissi ran t R ran t
13 10 12 eqsstrdi Z = t R ran Z ran t
14 13 adantl P Fin Z = t R ran Z ran t
15 rneq Z = z P t z ran U Q ran Z = ran z P t z ran U Q
16 15 unieqd Z = z P t z ran U Q ran Z = ran z P t z ran U Q
17 rncoss ran z P t z ran U Q ran z P t z ran U
18 17 unissi ran z P t z ran U Q ran z P t z ran U
19 unissb ran z P t z ran U ran t a ran z P t z ran U a ran t
20 abid a a | z P a = t z ran U z P a = t z ran U
21 fvssunirn t z ran t
22 21 a1i z P t z ran t
23 22 ssdifssd z P t z ran U ran t
24 sseq1 a = t z ran U a ran t t z ran U ran t
25 23 24 syl5ibrcom z P a = t z ran U a ran t
26 25 rexlimiv z P a = t z ran U a ran t
27 20 26 sylbi a a | z P a = t z ran U a ran t
28 eqid z P t z ran U = z P t z ran U
29 28 rnmpt ran z P t z ran U = a | z P a = t z ran U
30 27 29 eleq2s a ran z P t z ran U a ran t
31 19 30 mprgbir ran z P t z ran U ran t
32 18 31 sstri ran z P t z ran U Q ran t
33 16 32 eqsstrdi Z = z P t z ran U Q ran Z ran t
34 33 adantl ¬ P Fin Z = z P t z ran U Q ran Z ran t
35 14 34 jaoi P Fin Z = t R ¬ P Fin Z = z P t z ran U Q ran Z ran t
36 6 8 35 mp2b ran Z ran t