Metamath Proof Explorer


Theorem fin23lem30

Description: Lemma for fin23 . The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.b P = v ω | ran U t v
fin23lem.c Q = w ω ι x P | x P w
fin23lem.d R = w ω ι x ω P | x ω P w
fin23lem.e Z = if P Fin t R z P t z ran U Q
Assertion fin23lem30 Fun t ran Z ran U =

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
3 fin23lem.b P = v ω | ran U t v
4 fin23lem.c Q = w ω ι x P | x P w
5 fin23lem.d R = w ω ι x ω P | x ω P w
6 fin23lem.e Z = if P Fin t R z P t z ran U Q
7 eqif Z = if P Fin t R z P t z ran U Q P Fin Z = t R ¬ P Fin Z = z P t z ran U Q
8 7 biimpi Z = if P Fin t R z P t z ran U Q P Fin Z = t R ¬ P Fin Z = z P t z ran U Q
9 simpr P Fin Fun t Fun t
10 5 funmpt2 Fun R
11 funco Fun t Fun R Fun t R
12 9 10 11 sylancl P Fin Fun t Fun t R
13 elunirn Fun t R a ran t R b dom t R a t R b
14 12 13 syl P Fin Fun t a ran t R b dom t R a t R b
15 dmcoss dom t R dom R
16 15 sseli b dom t R b dom R
17 fvco Fun R b dom R t R b = t R b
18 10 17 mpan b dom R t R b = t R b
19 18 adantl P Fin Fun t b dom R t R b = t R b
20 19 eleq2d P Fin Fun t b dom R a t R b a t R b
21 incom t R b ran U = ran U t R b
22 difss ω P ω
23 ominf ¬ ω Fin
24 3 ssrab3 P ω
25 undif P ω P ω P = ω
26 24 25 mpbi P ω P = ω
27 unfi P Fin ω P Fin P ω P Fin
28 26 27 eqeltrrid P Fin ω P Fin ω Fin
29 28 ex P Fin ω P Fin ω Fin
30 23 29 mtoi P Fin ¬ ω P Fin
31 30 ad2antrr P Fin Fun t b dom R ¬ ω P Fin
32 5 fin23lem22 ω P ω ¬ ω P Fin R : ω 1-1 onto ω P
33 22 31 32 sylancr P Fin Fun t b dom R R : ω 1-1 onto ω P
34 f1of R : ω 1-1 onto ω P R : ω ω P
35 33 34 syl P Fin Fun t b dom R R : ω ω P
36 simpr P Fin Fun t b dom R b dom R
37 35 fdmd P Fin Fun t b dom R dom R = ω
38 36 37 eleqtrd P Fin Fun t b dom R b ω
39 35 38 ffvelrnd P Fin Fun t b dom R R b ω P
40 39 eldifbd P Fin Fun t b dom R ¬ R b P
41 3 eleq2i R b P R b v ω | ran U t v
42 40 41 sylnib P Fin Fun t b dom R ¬ R b v ω | ran U t v
43 39 eldifad P Fin Fun t b dom R R b ω
44 fveq2 v = R b t v = t R b
45 44 sseq2d v = R b ran U t v ran U t R b
46 45 elrab3 R b ω R b v ω | ran U t v ran U t R b
47 43 46 syl P Fin Fun t b dom R R b v ω | ran U t v ran U t R b
48 42 47 mtbid P Fin Fun t b dom R ¬ ran U t R b
49 1 fin23lem20 R b ω ran U t R b ran U t R b =
50 43 49 syl P Fin Fun t b dom R ran U t R b ran U t R b =
51 orel1 ¬ ran U t R b ran U t R b ran U t R b = ran U t R b =
52 48 50 51 sylc P Fin Fun t b dom R ran U t R b =
53 21 52 eqtrid P Fin Fun t b dom R t R b ran U =
54 disj t R b ran U = a t R b ¬ a ran U
55 53 54 sylib P Fin Fun t b dom R a t R b ¬ a ran U
56 rsp a t R b ¬ a ran U a t R b ¬ a ran U
57 55 56 syl P Fin Fun t b dom R a t R b ¬ a ran U
58 20 57 sylbid P Fin Fun t b dom R a t R b ¬ a ran U
59 58 ex P Fin Fun t b dom R a t R b ¬ a ran U
60 16 59 syl5 P Fin Fun t b dom t R a t R b ¬ a ran U
61 60 rexlimdv P Fin Fun t b dom t R a t R b ¬ a ran U
62 14 61 sylbid P Fin Fun t a ran t R ¬ a ran U
63 62 ralrimiv P Fin Fun t a ran t R ¬ a ran U
64 disj ran t R ran U = a ran t R ¬ a ran U
65 63 64 sylibr P Fin Fun t ran t R ran U =
66 rneq Z = t R ran Z = ran t R
67 66 unieqd Z = t R ran Z = ran t R
68 67 ineq1d Z = t R ran Z ran U = ran t R ran U
69 68 eqeq1d Z = t R ran Z ran U = ran t R ran U =
70 65 69 syl5ibr Z = t R P Fin Fun t ran Z ran U =
71 70 expd Z = t R P Fin Fun t ran Z ran U =
72 71 impcom P Fin Z = t R Fun t ran Z ran U =
73 rneq Z = z P t z ran U Q ran Z = ran z P t z ran U Q
74 73 unieqd Z = z P t z ran U Q ran Z = ran z P t z ran U Q
75 74 ineq1d Z = z P t z ran U Q ran Z ran U = ran z P t z ran U Q ran U
76 rncoss ran z P t z ran U Q ran z P t z ran U
77 76 unissi ran z P t z ran U Q ran z P t z ran U
78 disj ran z P t z ran U ran U = a ran z P t z ran U ¬ a ran U
79 eluniab a b | z P b = t z ran U b a b z P b = t z ran U
80 eleq2 b = t z ran U a b a t z ran U
81 eldifn a t z ran U ¬ a ran U
82 80 81 syl6bi b = t z ran U a b ¬ a ran U
83 82 rexlimivw z P b = t z ran U a b ¬ a ran U
84 83 impcom a b z P b = t z ran U ¬ a ran U
85 84 exlimiv b a b z P b = t z ran U ¬ a ran U
86 79 85 sylbi a b | z P b = t z ran U ¬ a ran U
87 eqid z P t z ran U = z P t z ran U
88 87 rnmpt ran z P t z ran U = b | z P b = t z ran U
89 88 unieqi ran z P t z ran U = b | z P b = t z ran U
90 86 89 eleq2s a ran z P t z ran U ¬ a ran U
91 78 90 mprgbir ran z P t z ran U ran U =
92 ssdisj ran z P t z ran U Q ran z P t z ran U ran z P t z ran U ran U = ran z P t z ran U Q ran U =
93 77 91 92 mp2an ran z P t z ran U Q ran U =
94 75 93 eqtrdi Z = z P t z ran U Q ran Z ran U =
95 94 a1d Z = z P t z ran U Q Fun t ran Z ran U =
96 95 adantl ¬ P Fin Z = z P t z ran U Q Fun t ran Z ran U =
97 72 96 jaoi P Fin Z = t R ¬ P Fin Z = z P t z ran U Q Fun t ran Z ran U =
98 6 8 97 mp2b Fun t ran Z ran U =