Metamath Proof Explorer


Theorem fin23lem31

Description: Lemma for fin23 . The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.b P = v ω | ran U t v
fin23lem.c Q = w ω ι x P | x P w
fin23lem.d R = w ω ι x ω P | x ω P w
fin23lem.e Z = if P Fin t R z P t z ran U Q
Assertion fin23lem31 t : ω 1-1 V G F ran t G ran Z ran t

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
3 fin23lem.b P = v ω | ran U t v
4 fin23lem.c Q = w ω ι x P | x P w
5 fin23lem.d R = w ω ι x ω P | x ω P w
6 fin23lem.e Z = if P Fin t R z P t z ran U Q
7 2 ssfin3ds G F ran t G ran t F
8 1 2 3 4 5 6 fin23lem29 ran Z ran t
9 8 a1i t : ω 1-1 V ran t F ran Z ran t
10 1 2 fin23lem21 ran t F t : ω 1-1 V ran U
11 10 ancoms t : ω 1-1 V ran t F ran U
12 n0 ran U a a ran U
13 11 12 sylib t : ω 1-1 V ran t F a a ran U
14 1 fnseqom U Fn ω
15 fndm U Fn ω dom U = ω
16 14 15 ax-mp dom U = ω
17 peano1 ω
18 17 ne0ii ω
19 16 18 eqnetri dom U
20 dm0rn0 dom U = ran U =
21 20 necon3bii dom U ran U
22 19 21 mpbi ran U
23 intssuni ran U ran U ran U
24 22 23 ax-mp ran U ran U
25 1 fin23lem16 ran U = ran t
26 24 25 sseqtri ran U ran t
27 26 sseli a ran U a ran t
28 f1fun t : ω 1-1 V Fun t
29 28 adantr t : ω 1-1 V ran t F Fun t
30 1 2 3 4 5 6 fin23lem30 Fun t ran Z ran U =
31 29 30 syl t : ω 1-1 V ran t F ran Z ran U =
32 disj ran Z ran U = a ran Z ¬ a ran U
33 31 32 sylib t : ω 1-1 V ran t F a ran Z ¬ a ran U
34 rsp a ran Z ¬ a ran U a ran Z ¬ a ran U
35 33 34 syl t : ω 1-1 V ran t F a ran Z ¬ a ran U
36 35 con2d t : ω 1-1 V ran t F a ran U ¬ a ran Z
37 36 imp t : ω 1-1 V ran t F a ran U ¬ a ran Z
38 nelne1 a ran t ¬ a ran Z ran t ran Z
39 27 37 38 syl2an2 t : ω 1-1 V ran t F a ran U ran t ran Z
40 39 necomd t : ω 1-1 V ran t F a ran U ran Z ran t
41 13 40 exlimddv t : ω 1-1 V ran t F ran Z ran t
42 df-pss ran Z ran t ran Z ran t ran Z ran t
43 9 41 42 sylanbrc t : ω 1-1 V ran t F ran Z ran t
44 7 43 sylan2 t : ω 1-1 V G F ran t G ran Z ran t
45 44 3impb t : ω 1-1 V G F ran t G ran Z ran t