Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem33.f |
|
2 |
|
fin23lem.f |
|
3 |
|
fin23lem.g |
|
4 |
|
fin23lem.h |
|
5 |
|
fin23lem.i |
|
6 |
|
fveq2 |
|
7 |
|
f1eq1 |
|
8 |
6 7
|
syl |
|
9 |
6
|
rneqd |
|
10 |
9
|
unieqd |
|
11 |
10
|
sseq1d |
|
12 |
8 11
|
anbi12d |
|
13 |
12
|
imbi2d |
|
14 |
|
fveq2 |
|
15 |
|
f1eq1 |
|
16 |
14 15
|
syl |
|
17 |
14
|
rneqd |
|
18 |
17
|
unieqd |
|
19 |
18
|
sseq1d |
|
20 |
16 19
|
anbi12d |
|
21 |
20
|
imbi2d |
|
22 |
|
fveq2 |
|
23 |
|
f1eq1 |
|
24 |
22 23
|
syl |
|
25 |
22
|
rneqd |
|
26 |
25
|
unieqd |
|
27 |
26
|
sseq1d |
|
28 |
24 27
|
anbi12d |
|
29 |
28
|
imbi2d |
|
30 |
|
fveq2 |
|
31 |
|
f1eq1 |
|
32 |
30 31
|
syl |
|
33 |
30
|
rneqd |
|
34 |
33
|
unieqd |
|
35 |
34
|
sseq1d |
|
36 |
32 35
|
anbi12d |
|
37 |
36
|
imbi2d |
|
38 |
5
|
fveq1i |
|
39 |
|
fr0g |
|
40 |
39
|
elv |
|
41 |
38 40
|
eqtri |
|
42 |
|
f1eq1 |
|
43 |
41 42
|
ax-mp |
|
44 |
41
|
rneqi |
|
45 |
44
|
unieqi |
|
46 |
45
|
sseq1i |
|
47 |
43 46
|
anbi12i |
|
48 |
2 3 47
|
sylanbrc |
|
49 |
|
fvex |
|
50 |
|
f1eq1 |
|
51 |
|
rneq |
|
52 |
51
|
unieqd |
|
53 |
52
|
sseq1d |
|
54 |
50 53
|
anbi12d |
|
55 |
|
fveq2 |
|
56 |
|
f1eq1 |
|
57 |
55 56
|
syl |
|
58 |
55
|
rneqd |
|
59 |
58
|
unieqd |
|
60 |
59 52
|
psseq12d |
|
61 |
57 60
|
anbi12d |
|
62 |
54 61
|
imbi12d |
|
63 |
49 62
|
spcv |
|
64 |
4 63
|
syl |
|
65 |
64
|
imp |
|
66 |
|
pssss |
|
67 |
|
sstr |
|
68 |
66 67
|
sylan |
|
69 |
68
|
expcom |
|
70 |
69
|
anim2d |
|
71 |
70
|
ad2antll |
|
72 |
65 71
|
mpd |
|
73 |
72
|
3adant1 |
|
74 |
|
frsuc |
|
75 |
5
|
fveq1i |
|
76 |
5
|
fveq1i |
|
77 |
76
|
fveq2i |
|
78 |
74 75 77
|
3eqtr4g |
|
79 |
|
f1eq1 |
|
80 |
|
rneq |
|
81 |
80
|
unieqd |
|
82 |
81
|
sseq1d |
|
83 |
79 82
|
anbi12d |
|
84 |
78 83
|
syl |
|
85 |
84
|
3ad2ant1 |
|
86 |
73 85
|
mpbird |
|
87 |
86
|
3exp |
|
88 |
87
|
a2d |
|
89 |
13 21 29 37 48 88
|
finds |
|
90 |
89
|
impcom |
|