Metamath Proof Explorer


Theorem fin23lem38

Description: Lemma for fin23 . The contradictory chain has no minimum. (Contributed by Stefan O'Rear, 2-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.f φ h : ω 1-1 V
fin23lem.g φ ran h G
fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
fin23lem.i Y = rec i h ω
Assertion fin23lem38 φ ¬ ran b ω ran Y b ran b ω ran Y b

Proof

Step Hyp Ref Expression
1 fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
2 fin23lem.f φ h : ω 1-1 V
3 fin23lem.g φ ran h G
4 fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
5 fin23lem.i Y = rec i h ω
6 peano2 d ω suc d ω
7 eqid ran Y suc d = ran Y suc d
8 fveq2 b = suc d Y b = Y suc d
9 8 rneqd b = suc d ran Y b = ran Y suc d
10 9 unieqd b = suc d ran Y b = ran Y suc d
11 10 rspceeqv suc d ω ran Y suc d = ran Y suc d b ω ran Y suc d = ran Y b
12 7 11 mpan2 suc d ω b ω ran Y suc d = ran Y b
13 fvex Y suc d V
14 13 rnex ran Y suc d V
15 14 uniex ran Y suc d V
16 eqid b ω ran Y b = b ω ran Y b
17 16 elrnmpt ran Y suc d V ran Y suc d ran b ω ran Y b b ω ran Y suc d = ran Y b
18 15 17 ax-mp ran Y suc d ran b ω ran Y b b ω ran Y suc d = ran Y b
19 12 18 sylibr suc d ω ran Y suc d ran b ω ran Y b
20 6 19 syl d ω ran Y suc d ran b ω ran Y b
21 20 adantl φ d ω ran Y suc d ran b ω ran Y b
22 intss1 ran Y suc d ran b ω ran Y b ran b ω ran Y b ran Y suc d
23 21 22 syl φ d ω ran b ω ran Y b ran Y suc d
24 1 2 3 4 5 fin23lem35 φ d ω ran Y suc d ran Y d
25 23 24 sspsstrd φ d ω ran b ω ran Y b ran Y d
26 dfpss2 ran b ω ran Y b ran Y d ran b ω ran Y b ran Y d ¬ ran b ω ran Y b = ran Y d
27 26 simprbi ran b ω ran Y b ran Y d ¬ ran b ω ran Y b = ran Y d
28 25 27 syl φ d ω ¬ ran b ω ran Y b = ran Y d
29 28 nrexdv φ ¬ d ω ran b ω ran Y b = ran Y d
30 fveq2 b = d Y b = Y d
31 30 rneqd b = d ran Y b = ran Y d
32 31 unieqd b = d ran Y b = ran Y d
33 32 cbvmptv b ω ran Y b = d ω ran Y d
34 33 elrnmpt ran b ω ran Y b ran b ω ran Y b ran b ω ran Y b ran b ω ran Y b d ω ran b ω ran Y b = ran Y d
35 34 ibi ran b ω ran Y b ran b ω ran Y b d ω ran b ω ran Y b = ran Y d
36 29 35 nsyl φ ¬ ran b ω ran Y b ran b ω ran Y b