| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem33.f |
|
| 2 |
|
fin23lem.f |
|
| 3 |
|
fin23lem.g |
|
| 4 |
|
fin23lem.h |
|
| 5 |
|
fin23lem.i |
|
| 6 |
1 2 3 4 5
|
fin23lem38 |
|
| 7 |
1 2 3 4 5
|
fin23lem35 |
|
| 8 |
7
|
pssssd |
|
| 9 |
|
peano2 |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
rneqd |
|
| 12 |
11
|
unieqd |
|
| 13 |
|
eqid |
|
| 14 |
|
fvex |
|
| 15 |
14
|
rnex |
|
| 16 |
15
|
uniex |
|
| 17 |
12 13 16
|
fvmpt |
|
| 18 |
9 17
|
syl |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
rneqd |
|
| 21 |
20
|
unieqd |
|
| 22 |
|
fvex |
|
| 23 |
22
|
rnex |
|
| 24 |
23
|
uniex |
|
| 25 |
21 13 24
|
fvmpt |
|
| 26 |
18 25
|
sseq12d |
|
| 27 |
26
|
adantl |
|
| 28 |
8 27
|
mpbird |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
29
|
adantr |
|
| 31 |
|
fveq1 |
|
| 32 |
|
fveq1 |
|
| 33 |
31 32
|
sseq12d |
|
| 34 |
33
|
ralbidv |
|
| 35 |
|
rneq |
|
| 36 |
35
|
inteqd |
|
| 37 |
36 35
|
eleq12d |
|
| 38 |
34 37
|
imbi12d |
|
| 39 |
1
|
isfin3ds |
|
| 40 |
39
|
ibi |
|
| 41 |
40
|
adantl |
|
| 42 |
1 2 3 4 5
|
fin23lem34 |
|
| 43 |
42
|
simprd |
|
| 44 |
43
|
adantlr |
|
| 45 |
|
elpw2g |
|
| 46 |
45
|
ad2antlr |
|
| 47 |
44 46
|
mpbird |
|
| 48 |
47
|
fmpttd |
|
| 49 |
|
pwexg |
|
| 50 |
|
vex |
|
| 51 |
|
f1f |
|
| 52 |
|
dmfex |
|
| 53 |
50 51 52
|
sylancr |
|
| 54 |
2 53
|
syl |
|
| 55 |
|
elmapg |
|
| 56 |
49 54 55
|
syl2anr |
|
| 57 |
48 56
|
mpbird |
|
| 58 |
38 41 57
|
rspcdva |
|
| 59 |
30 58
|
mpd |
|
| 60 |
6 59
|
mtand |
|