Metamath Proof Explorer


Theorem fin23lem39

Description: Lemma for fin23 . Thus, we have that g could not have been in F after all. (Contributed by Stefan O'Rear, 4-Nov-2014)

Ref Expression
Hypotheses fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.f φ h : ω 1-1 V
fin23lem.g φ ran h G
fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
fin23lem.i Y = rec i h ω
Assertion fin23lem39 φ ¬ G F

Proof

Step Hyp Ref Expression
1 fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
2 fin23lem.f φ h : ω 1-1 V
3 fin23lem.g φ ran h G
4 fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
5 fin23lem.i Y = rec i h ω
6 1 2 3 4 5 fin23lem38 φ ¬ ran c ω ran Y c ran c ω ran Y c
7 1 2 3 4 5 fin23lem35 φ e ω ran Y suc e ran Y e
8 7 pssssd φ e ω ran Y suc e ran Y e
9 peano2 e ω suc e ω
10 fveq2 c = suc e Y c = Y suc e
11 10 rneqd c = suc e ran Y c = ran Y suc e
12 11 unieqd c = suc e ran Y c = ran Y suc e
13 eqid c ω ran Y c = c ω ran Y c
14 fvex Y suc e V
15 14 rnex ran Y suc e V
16 15 uniex ran Y suc e V
17 12 13 16 fvmpt suc e ω c ω ran Y c suc e = ran Y suc e
18 9 17 syl e ω c ω ran Y c suc e = ran Y suc e
19 fveq2 c = e Y c = Y e
20 19 rneqd c = e ran Y c = ran Y e
21 20 unieqd c = e ran Y c = ran Y e
22 fvex Y e V
23 22 rnex ran Y e V
24 23 uniex ran Y e V
25 21 13 24 fvmpt e ω c ω ran Y c e = ran Y e
26 18 25 sseq12d e ω c ω ran Y c suc e c ω ran Y c e ran Y suc e ran Y e
27 26 adantl φ e ω c ω ran Y c suc e c ω ran Y c e ran Y suc e ran Y e
28 8 27 mpbird φ e ω c ω ran Y c suc e c ω ran Y c e
29 28 ralrimiva φ e ω c ω ran Y c suc e c ω ran Y c e
30 29 adantr φ G F e ω c ω ran Y c suc e c ω ran Y c e
31 fveq1 d = c ω ran Y c d suc e = c ω ran Y c suc e
32 fveq1 d = c ω ran Y c d e = c ω ran Y c e
33 31 32 sseq12d d = c ω ran Y c d suc e d e c ω ran Y c suc e c ω ran Y c e
34 33 ralbidv d = c ω ran Y c e ω d suc e d e e ω c ω ran Y c suc e c ω ran Y c e
35 rneq d = c ω ran Y c ran d = ran c ω ran Y c
36 35 inteqd d = c ω ran Y c ran d = ran c ω ran Y c
37 36 35 eleq12d d = c ω ran Y c ran d ran d ran c ω ran Y c ran c ω ran Y c
38 34 37 imbi12d d = c ω ran Y c e ω d suc e d e ran d ran d e ω c ω ran Y c suc e c ω ran Y c e ran c ω ran Y c ran c ω ran Y c
39 1 isfin3ds G F G F d 𝒫 G ω e ω d suc e d e ran d ran d
40 39 ibi G F d 𝒫 G ω e ω d suc e d e ran d ran d
41 40 adantl φ G F d 𝒫 G ω e ω d suc e d e ran d ran d
42 1 2 3 4 5 fin23lem34 φ c ω Y c : ω 1-1 V ran Y c G
43 42 simprd φ c ω ran Y c G
44 43 adantlr φ G F c ω ran Y c G
45 elpw2g G F ran Y c 𝒫 G ran Y c G
46 45 ad2antlr φ G F c ω ran Y c 𝒫 G ran Y c G
47 44 46 mpbird φ G F c ω ran Y c 𝒫 G
48 47 fmpttd φ G F c ω ran Y c : ω 𝒫 G
49 pwexg G F 𝒫 G V
50 vex h V
51 f1f h : ω 1-1 V h : ω V
52 dmfex h V h : ω V ω V
53 50 51 52 sylancr h : ω 1-1 V ω V
54 2 53 syl φ ω V
55 elmapg 𝒫 G V ω V c ω ran Y c 𝒫 G ω c ω ran Y c : ω 𝒫 G
56 49 54 55 syl2anr φ G F c ω ran Y c 𝒫 G ω c ω ran Y c : ω 𝒫 G
57 48 56 mpbird φ G F c ω ran Y c 𝒫 G ω
58 38 41 57 rspcdva φ G F e ω c ω ran Y c suc e c ω ran Y c e ran c ω ran Y c ran c ω ran Y c
59 30 58 mpd φ G F ran c ω ran Y c ran c ω ran Y c
60 6 59 mtand φ ¬ G F