Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin2i
Next ⟩
isfin3
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin2i
Description:
Property of a II-finite set.
(Contributed by
Stefan O'Rear
, 16-May-2015)
Ref
Expression
Assertion
fin2i
⊢
A
∈
Fin
II
∧
B
⊆
𝒫
A
∧
B
≠
∅
∧
[⊂]
Or
B
→
⋃
B
∈
B
Proof
Step
Hyp
Ref
Expression
1
neeq1
⊢
y
=
B
→
y
≠
∅
↔
B
≠
∅
2
soeq2
⊢
y
=
B
→
[⊂]
Or
y
↔
[⊂]
Or
B
3
1
2
anbi12d
⊢
y
=
B
→
y
≠
∅
∧
[⊂]
Or
y
↔
B
≠
∅
∧
[⊂]
Or
B
4
unieq
⊢
y
=
B
→
⋃
y
=
⋃
B
5
id
⊢
y
=
B
→
y
=
B
6
4
5
eleq12d
⊢
y
=
B
→
⋃
y
∈
y
↔
⋃
B
∈
B
7
3
6
imbi12d
⊢
y
=
B
→
y
≠
∅
∧
[⊂]
Or
y
→
⋃
y
∈
y
↔
B
≠
∅
∧
[⊂]
Or
B
→
⋃
B
∈
B
8
isfin2
⊢
A
∈
Fin
II
→
A
∈
Fin
II
↔
∀
y
∈
𝒫
𝒫
A
y
≠
∅
∧
[⊂]
Or
y
→
⋃
y
∈
y
9
8
ibi
⊢
A
∈
Fin
II
→
∀
y
∈
𝒫
𝒫
A
y
≠
∅
∧
[⊂]
Or
y
→
⋃
y
∈
y
10
9
adantr
⊢
A
∈
Fin
II
∧
B
⊆
𝒫
A
→
∀
y
∈
𝒫
𝒫
A
y
≠
∅
∧
[⊂]
Or
y
→
⋃
y
∈
y
11
pwexg
⊢
A
∈
Fin
II
→
𝒫
A
∈
V
12
elpw2g
⊢
𝒫
A
∈
V
→
B
∈
𝒫
𝒫
A
↔
B
⊆
𝒫
A
13
11
12
syl
⊢
A
∈
Fin
II
→
B
∈
𝒫
𝒫
A
↔
B
⊆
𝒫
A
14
13
biimpar
⊢
A
∈
Fin
II
∧
B
⊆
𝒫
A
→
B
∈
𝒫
𝒫
A
15
7
10
14
rspcdva
⊢
A
∈
Fin
II
∧
B
⊆
𝒫
A
→
B
≠
∅
∧
[⊂]
Or
B
→
⋃
B
∈
B
16
15
imp
⊢
A
∈
Fin
II
∧
B
⊆
𝒫
A
∧
B
≠
∅
∧
[⊂]
Or
B
→
⋃
B
∈
B