Metamath Proof Explorer


Theorem fin2i2

Description: A II-finite set contains minimal elements for every nonempty chain. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion fin2i2 A FinII B 𝒫 A B [⊂] Or B B B

Proof

Step Hyp Ref Expression
1 simplr A FinII B 𝒫 A B [⊂] Or B B 𝒫 A
2 simpll A FinII B 𝒫 A B [⊂] Or B A FinII
3 ssrab2 c 𝒫 A | A c B 𝒫 A
4 3 a1i A FinII B 𝒫 A B [⊂] Or B c 𝒫 A | A c B 𝒫 A
5 simprl A FinII B 𝒫 A B [⊂] Or B B
6 fin23lem7 A FinII B 𝒫 A B c 𝒫 A | A c B
7 2 1 5 6 syl3anc A FinII B 𝒫 A B [⊂] Or B c 𝒫 A | A c B
8 sorpsscmpl [⊂] Or B [⊂] Or c 𝒫 A | A c B
9 8 ad2antll A FinII B 𝒫 A B [⊂] Or B [⊂] Or c 𝒫 A | A c B
10 fin2i A FinII c 𝒫 A | A c B 𝒫 A c 𝒫 A | A c B [⊂] Or c 𝒫 A | A c B c 𝒫 A | A c B c 𝒫 A | A c B
11 2 4 7 9 10 syl22anc A FinII B 𝒫 A B [⊂] Or B c 𝒫 A | A c B c 𝒫 A | A c B
12 sorpssuni [⊂] Or c 𝒫 A | A c B m c 𝒫 A | A c B n c 𝒫 A | A c B ¬ m n c 𝒫 A | A c B c 𝒫 A | A c B
13 9 12 syl A FinII B 𝒫 A B [⊂] Or B m c 𝒫 A | A c B n c 𝒫 A | A c B ¬ m n c 𝒫 A | A c B c 𝒫 A | A c B
14 11 13 mpbird A FinII B 𝒫 A B [⊂] Or B m c 𝒫 A | A c B n c 𝒫 A | A c B ¬ m n
15 psseq2 z = A m w z w A m
16 psseq2 n = A w m n m A w
17 pssdifcom2 m A w A w A m m A w
18 15 16 17 fin23lem11 B 𝒫 A m c 𝒫 A | A c B n c 𝒫 A | A c B ¬ m n z B w B ¬ w z
19 1 14 18 sylc A FinII B 𝒫 A B [⊂] Or B z B w B ¬ w z
20 sorpssint [⊂] Or B z B w B ¬ w z B B
21 20 ad2antll A FinII B 𝒫 A B [⊂] Or B z B w B ¬ w z B B
22 19 21 mpbid A FinII B 𝒫 A B [⊂] Or B B B