Metamath Proof Explorer


Theorem fin33i

Description: Inference from isfin3-3 . (This is actually a bit stronger than isfin3-3 because it does not assume F is a set and does not use the Axiom of Infinity either.) (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin33i A FinIII F : ω 𝒫 A x ω F suc x F x ran F ran F

Proof

Step Hyp Ref Expression
1 isfin32i A FinIII ¬ ω * A
2 1 3ad2ant1 A FinIII F : ω 𝒫 A x ω F suc x F x ¬ ω * A
3 isf32lem11 A FinIII F : ω 𝒫 A x ω F suc x F x ¬ ran F ran F ω * A
4 3 3exp2 A FinIII F : ω 𝒫 A x ω F suc x F x ¬ ran F ran F ω * A
5 4 3imp A FinIII F : ω 𝒫 A x ω F suc x F x ¬ ran F ran F ω * A
6 2 5 mt3d A FinIII F : ω 𝒫 A x ω F suc x F x ran F ran F