Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin34
Next ⟩
isfin5-2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin34
Description:
Every III-finite set is IV-finite.
(Contributed by
Stefan O'Rear
, 30-Oct-2014)
Ref
Expression
Assertion
fin34
⊢
A
∈
Fin
III
→
A
∈
Fin
IV
Proof
Step
Hyp
Ref
Expression
1
isfin3
⊢
A
∈
Fin
III
↔
𝒫
A
∈
Fin
IV
2
isfin4-2
⊢
𝒫
A
∈
Fin
IV
→
𝒫
A
∈
Fin
IV
↔
¬
ω
≼
𝒫
A
3
2
ibi
⊢
𝒫
A
∈
Fin
IV
→
¬
ω
≼
𝒫
A
4
reldom
⊢
Rel
⁡
≼
5
4
brrelex2i
⊢
ω
≼
A
→
A
∈
V
6
canth2g
⊢
A
∈
V
→
A
≺
𝒫
A
7
5
6
syl
⊢
ω
≼
A
→
A
≺
𝒫
A
8
domsdomtr
⊢
ω
≼
A
∧
A
≺
𝒫
A
→
ω
≺
𝒫
A
9
7
8
mpdan
⊢
ω
≼
A
→
ω
≺
𝒫
A
10
sdomdom
⊢
ω
≺
𝒫
A
→
ω
≼
𝒫
A
11
9
10
syl
⊢
ω
≼
A
→
ω
≼
𝒫
A
12
3
11
nsyl
⊢
𝒫
A
∈
Fin
IV
→
¬
ω
≼
A
13
1
12
sylbi
⊢
A
∈
Fin
III
→
¬
ω
≼
A
14
isfin4-2
⊢
A
∈
Fin
III
→
A
∈
Fin
IV
↔
¬
ω
≼
A
15
13
14
mpbird
⊢
A
∈
Fin
III
→
A
∈
Fin
IV