Metamath Proof Explorer


Theorem fin34

Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion fin34 A FinIII A FinIV

Proof

Step Hyp Ref Expression
1 isfin3 A FinIII 𝒫 A FinIV
2 isfin4-2 𝒫 A FinIV 𝒫 A FinIV ¬ ω 𝒫 A
3 2 ibi 𝒫 A FinIV ¬ ω 𝒫 A
4 reldom Rel
5 4 brrelex2i ω A A V
6 canth2g A V A 𝒫 A
7 5 6 syl ω A A 𝒫 A
8 domsdomtr ω A A 𝒫 A ω 𝒫 A
9 7 8 mpdan ω A ω 𝒫 A
10 sdomdom ω 𝒫 A ω 𝒫 A
11 9 10 syl ω A ω 𝒫 A
12 3 11 nsyl 𝒫 A FinIV ¬ ω A
13 1 12 sylbi A FinIII ¬ ω A
14 isfin4-2 A FinIII A FinIV ¬ ω A
15 13 14 mpbird A FinIII A FinIV