Metamath Proof Explorer


Theorem fin45

Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014) (Proof shortened by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion fin45 A FinIV A FinV

Proof

Step Hyp Ref Expression
1 simpl A A A ⊔︀ A A
2 relen Rel
3 2 brrelex1i A A ⊔︀ A A V
4 3 adantl A A A ⊔︀ A A V
5 0sdomg A V A A
6 4 5 syl A A A ⊔︀ A A A
7 1 6 mpbird A A A ⊔︀ A A
8 0sdom1dom A 1 𝑜 A
9 7 8 sylib A A A ⊔︀ A 1 𝑜 A
10 djudom2 1 𝑜 A A V A ⊔︀ 1 𝑜 A ⊔︀ A
11 9 4 10 syl2anc A A A ⊔︀ A A ⊔︀ 1 𝑜 A ⊔︀ A
12 domen2 A A ⊔︀ A A ⊔︀ 1 𝑜 A A ⊔︀ 1 𝑜 A ⊔︀ A
13 12 adantl A A A ⊔︀ A A ⊔︀ 1 𝑜 A A ⊔︀ 1 𝑜 A ⊔︀ A
14 11 13 mpbird A A A ⊔︀ A A ⊔︀ 1 𝑜 A
15 domnsym A ⊔︀ 1 𝑜 A ¬ A A ⊔︀ 1 𝑜
16 14 15 syl A A A ⊔︀ A ¬ A A ⊔︀ 1 𝑜
17 isfin4p1 A FinIV A A ⊔︀ 1 𝑜
18 17 biimpi A FinIV A A ⊔︀ 1 𝑜
19 16 18 nsyl3 A FinIV ¬ A A A ⊔︀ A
20 isfin5-2 A FinIV A FinV ¬ A A A ⊔︀ A
21 19 20 mpbird A FinIV A FinV