Metamath Proof Explorer


Theorem fin4en1

Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion fin4en1 A B A FinIV B FinIV

Proof

Step Hyp Ref Expression
1 ensym A B B A
2 bren B A f f : B 1-1 onto A
3 simpr f : B 1-1 onto A x B x B
4 f1of1 f : B 1-1 onto A f : B 1-1 A
5 pssss x B x B
6 ssid B B
7 5 6 jctir x B x B B B
8 f1imapss f : B 1-1 A x B B B f x f B x B
9 4 7 8 syl2an f : B 1-1 onto A x B f x f B x B
10 3 9 mpbird f : B 1-1 onto A x B f x f B
11 imadmrn f dom f = ran f
12 f1odm f : B 1-1 onto A dom f = B
13 12 imaeq2d f : B 1-1 onto A f dom f = f B
14 dff1o5 f : B 1-1 onto A f : B 1-1 A ran f = A
15 14 simprbi f : B 1-1 onto A ran f = A
16 11 13 15 3eqtr3a f : B 1-1 onto A f B = A
17 16 adantr f : B 1-1 onto A x B f B = A
18 17 psseq2d f : B 1-1 onto A x B f x f B f x A
19 10 18 mpbid f : B 1-1 onto A x B f x A
20 19 adantrr f : B 1-1 onto A x B x B f x A
21 vex x V
22 21 f1imaen f : B 1-1 A x B f x x
23 4 5 22 syl2an f : B 1-1 onto A x B f x x
24 23 adantrr f : B 1-1 onto A x B x B f x x
25 simprr f : B 1-1 onto A x B x B x B
26 entr f x x x B f x B
27 24 25 26 syl2anc f : B 1-1 onto A x B x B f x B
28 vex f V
29 f1oen3g f V f : B 1-1 onto A B A
30 28 29 mpan f : B 1-1 onto A B A
31 30 adantr f : B 1-1 onto A x B x B B A
32 entr f x B B A f x A
33 27 31 32 syl2anc f : B 1-1 onto A x B x B f x A
34 fin4i f x A f x A ¬ A FinIV
35 20 33 34 syl2anc f : B 1-1 onto A x B x B ¬ A FinIV
36 35 ex f : B 1-1 onto A x B x B ¬ A FinIV
37 36 exlimdv f : B 1-1 onto A x x B x B ¬ A FinIV
38 37 con2d f : B 1-1 onto A A FinIV ¬ x x B x B
39 38 exlimiv f f : B 1-1 onto A A FinIV ¬ x x B x B
40 2 39 sylbi B A A FinIV ¬ x x B x B
41 relen Rel
42 41 brrelex1i B A B V
43 isfin4 B V B FinIV ¬ x x B x B
44 42 43 syl B A B FinIV ¬ x x B x B
45 40 44 sylibrd B A A FinIV B FinIV
46 1 45 syl A B A FinIV B FinIV