Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
|
2 |
|
bren |
|
3 |
|
simpr |
|
4 |
|
f1of1 |
|
5 |
|
pssss |
|
6 |
|
ssid |
|
7 |
5 6
|
jctir |
|
8 |
|
f1imapss |
|
9 |
4 7 8
|
syl2an |
|
10 |
3 9
|
mpbird |
|
11 |
|
imadmrn |
|
12 |
|
f1odm |
|
13 |
12
|
imaeq2d |
|
14 |
|
dff1o5 |
|
15 |
14
|
simprbi |
|
16 |
11 13 15
|
3eqtr3a |
|
17 |
16
|
adantr |
|
18 |
17
|
psseq2d |
|
19 |
10 18
|
mpbid |
|
20 |
19
|
adantrr |
|
21 |
|
vex |
|
22 |
21
|
f1imaen |
|
23 |
4 5 22
|
syl2an |
|
24 |
23
|
adantrr |
|
25 |
|
simprr |
|
26 |
|
entr |
|
27 |
24 25 26
|
syl2anc |
|
28 |
|
vex |
|
29 |
|
f1oen3g |
|
30 |
28 29
|
mpan |
|
31 |
30
|
adantr |
|
32 |
|
entr |
|
33 |
27 31 32
|
syl2anc |
|
34 |
|
fin4i |
|
35 |
20 33 34
|
syl2anc |
|
36 |
35
|
ex |
|
37 |
36
|
exlimdv |
|
38 |
37
|
con2d |
|
39 |
38
|
exlimiv |
|
40 |
2 39
|
sylbi |
|
41 |
|
relen |
|
42 |
41
|
brrelex1i |
|
43 |
|
isfin4 |
|
44 |
42 43
|
syl |
|
45 |
40 44
|
sylibrd |
|
46 |
1 45
|
syl |
|