Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin4i
Next ⟩
isfin5
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin4i
Description:
Infer that a set is IV-infinite.
(Contributed by
Stefan O'Rear
, 16-May-2015)
Ref
Expression
Assertion
fin4i
⊢
X
⊂
A
∧
X
≈
A
→
¬
A
∈
Fin
IV
Proof
Step
Hyp
Ref
Expression
1
isfin4
⊢
A
∈
Fin
IV
→
A
∈
Fin
IV
↔
¬
∃
x
x
⊂
A
∧
x
≈
A
2
1
ibi
⊢
A
∈
Fin
IV
→
¬
∃
x
x
⊂
A
∧
x
≈
A
3
relen
⊢
Rel
⁡
≈
4
3
brrelex1i
⊢
X
≈
A
→
X
∈
V
5
4
adantl
⊢
X
⊂
A
∧
X
≈
A
→
X
∈
V
6
psseq1
⊢
x
=
X
→
x
⊂
A
↔
X
⊂
A
7
breq1
⊢
x
=
X
→
x
≈
A
↔
X
≈
A
8
6
7
anbi12d
⊢
x
=
X
→
x
⊂
A
∧
x
≈
A
↔
X
⊂
A
∧
X
≈
A
9
8
spcegv
⊢
X
∈
V
→
X
⊂
A
∧
X
≈
A
→
∃
x
x
⊂
A
∧
x
≈
A
10
5
9
mpcom
⊢
X
⊂
A
∧
X
≈
A
→
∃
x
x
⊂
A
∧
x
≈
A
11
2
10
nsyl3
⊢
X
⊂
A
∧
X
≈
A
→
¬
A
∈
Fin
IV