Metamath Proof Explorer


Theorem fin4i

Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion fin4i X A X A ¬ A FinIV

Proof

Step Hyp Ref Expression
1 isfin4 A FinIV A FinIV ¬ x x A x A
2 1 ibi A FinIV ¬ x x A x A
3 relen Rel
4 3 brrelex1i X A X V
5 4 adantl X A X A X V
6 psseq1 x = X x A X A
7 breq1 x = X x A X A
8 6 7 anbi12d x = X x A x A X A X A
9 8 spcegv X V X A X A x x A x A
10 5 9 mpcom X A X A x x A x A
11 2 10 nsyl3 X A X A ¬ A FinIV