Metamath Proof Explorer


Theorem fin56

Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin56 A FinV A FinVI

Proof

Step Hyp Ref Expression
1 orc A = A = A 1 𝑜
2 sdom2en01 A 2 𝑜 A = A 1 𝑜
3 1 2 sylibr A = A 2 𝑜
4 3 orcd A = A 2 𝑜 A A × A
5 onfin2 ω = On Fin
6 inss2 On Fin Fin
7 5 6 eqsstri ω Fin
8 2onn 2 𝑜 ω
9 7 8 sselii 2 𝑜 Fin
10 relsdom Rel
11 10 brrelex1i A A ⊔︀ A A V
12 fidomtri 2 𝑜 Fin A V 2 𝑜 A ¬ A 2 𝑜
13 9 11 12 sylancr A A ⊔︀ A 2 𝑜 A ¬ A 2 𝑜
14 xp2dju 2 𝑜 × A = A ⊔︀ A
15 xpdom1g A V 2 𝑜 A 2 𝑜 × A A × A
16 11 15 sylan A A ⊔︀ A 2 𝑜 A 2 𝑜 × A A × A
17 14 16 eqbrtrrid A A ⊔︀ A 2 𝑜 A A ⊔︀ A A × A
18 sdomdomtr A A ⊔︀ A A ⊔︀ A A × A A A × A
19 17 18 syldan A A ⊔︀ A 2 𝑜 A A A × A
20 19 ex A A ⊔︀ A 2 𝑜 A A A × A
21 13 20 sylbird A A ⊔︀ A ¬ A 2 𝑜 A A × A
22 21 orrd A A ⊔︀ A A 2 𝑜 A A × A
23 4 22 jaoi A = A A ⊔︀ A A 2 𝑜 A A × A
24 isfin5 A FinV A = A A ⊔︀ A
25 isfin6 A FinVI A 2 𝑜 A A × A
26 23 24 25 3imtr4i A FinV A FinVI