Metamath Proof Explorer


Theorem fin67

Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin67 A FinVI A FinVII

Proof

Step Hyp Ref Expression
1 isfin6 A FinVI A 2 𝑜 A A × A
2 2onn 2 𝑜 ω
3 ssid 2 𝑜 2 𝑜
4 ssnnfi 2 𝑜 ω 2 𝑜 2 𝑜 2 𝑜 Fin
5 2 3 4 mp2an 2 𝑜 Fin
6 sdomdom A 2 𝑜 A 2 𝑜
7 domfi 2 𝑜 Fin A 2 𝑜 A Fin
8 5 6 7 sylancr A 2 𝑜 A Fin
9 fin17 A Fin A FinVII
10 8 9 syl A 2 𝑜 A FinVII
11 sdomnen A A × A ¬ A A × A
12 eldifi b On ω b On
13 ensym A b b A
14 isnumi b On b A A dom card
15 12 13 14 syl2an b On ω A b A dom card
16 vex b V
17 eldif b On ω b On ¬ b ω
18 ordom Ord ω
19 eloni b On Ord b
20 ordtri1 Ord ω Ord b ω b ¬ b ω
21 18 19 20 sylancr b On ω b ¬ b ω
22 21 biimpar b On ¬ b ω ω b
23 17 22 sylbi b On ω ω b
24 ssdomg b V ω b ω b
25 16 23 24 mpsyl b On ω ω b
26 domen2 A b ω A ω b
27 25 26 syl5ibr A b b On ω ω A
28 27 impcom b On ω A b ω A
29 infxpidm2 A dom card ω A A × A A
30 15 28 29 syl2anc b On ω A b A × A A
31 ensym A × A A A A × A
32 30 31 syl b On ω A b A A × A
33 32 rexlimiva b On ω A b A A × A
34 11 33 nsyl A A × A ¬ b On ω A b
35 relsdom Rel
36 35 brrelex1i A A × A A V
37 isfin7 A V A FinVII ¬ b On ω A b
38 36 37 syl A A × A A FinVII ¬ b On ω A b
39 34 38 mpbird A A × A A FinVII
40 10 39 jaoi A 2 𝑜 A A × A A FinVII
41 1 40 sylbi A FinVI A FinVII