Metamath Proof Explorer


Theorem finacn

Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion finacn AFinAC_A=V

Proof

Step Hyp Ref Expression
1 elmapi f𝒫xAf:A𝒫x
2 1 adantl AFinf𝒫xAf:A𝒫x
3 ffvelcdm f:A𝒫xyAfy𝒫x
4 eldifsni fy𝒫xfy
5 3 4 syl f:A𝒫xyAfy
6 n0 fyzzfy
7 5 6 sylib f:A𝒫xyAzzfy
8 rexv zVzfyzzfy
9 7 8 sylibr f:A𝒫xyAzVzfy
10 9 ralrimiva f:A𝒫xyAzVzfy
11 2 10 syl AFinf𝒫xAyAzVzfy
12 eleq1 z=gyzfygyfy
13 12 ac6sfi AFinyAzVzfygg:AVyAgyfy
14 11 13 syldan AFinf𝒫xAgg:AVyAgyfy
15 exsimpr gg:AVyAgyfygyAgyfy
16 14 15 syl AFinf𝒫xAgyAgyfy
17 16 ralrimiva AFinf𝒫xAgyAgyfy
18 vex xV
19 isacn xVAFinxAC_Af𝒫xAgyAgyfy
20 18 19 mpan AFinxAC_Af𝒫xAgyAgyfy
21 17 20 mpbird AFinxAC_A
22 18 a1i AFinxV
23 21 22 2thd AFinxAC_AxV
24 23 eqrdv AFinAC_A=V