Metamath Proof Explorer


Theorem fineqv

Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 3-Jan-2015)

Ref Expression
Assertion fineqv ¬ ω V Fin = V

Proof

Step Hyp Ref Expression
1 ssv Fin V
2 1 a1i ¬ ω V Fin V
3 vex a V
4 fineqvlem a V ¬ a Fin ω 𝒫 𝒫 a
5 3 4 mpan ¬ a Fin ω 𝒫 𝒫 a
6 reldom Rel
7 6 brrelex1i ω 𝒫 𝒫 a ω V
8 5 7 syl ¬ a Fin ω V
9 8 con1i ¬ ω V a Fin
10 9 a1d ¬ ω V a V a Fin
11 10 ssrdv ¬ ω V V Fin
12 2 11 eqssd ¬ ω V Fin = V
13 ominf ¬ ω Fin
14 eleq2 Fin = V ω Fin ω V
15 13 14 mtbii Fin = V ¬ ω V
16 12 15 impbii ¬ ω V Fin = V