| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwexg |
|
| 2 |
1
|
adantr |
|
| 3 |
2
|
pwexd |
|
| 4 |
|
ssrab2 |
|
| 5 |
|
elpw2g |
|
| 6 |
2 5
|
syl |
|
| 7 |
4 6
|
mpbiri |
|
| 8 |
7
|
a1d |
|
| 9 |
|
isinf |
|
| 10 |
9
|
r19.21bi |
|
| 11 |
10
|
ad2ant2lr |
|
| 12 |
|
velpw |
|
| 13 |
12
|
biimpri |
|
| 14 |
13
|
anim1i |
|
| 15 |
|
breq1 |
|
| 16 |
15
|
elrab |
|
| 17 |
14 16
|
sylibr |
|
| 18 |
17
|
eximi |
|
| 19 |
11 18
|
syl |
|
| 20 |
|
eleq2 |
|
| 21 |
20
|
biimpcd |
|
| 22 |
21
|
adantl |
|
| 23 |
16
|
simprbi |
|
| 24 |
|
breq1 |
|
| 25 |
24
|
elrab |
|
| 26 |
25
|
simprbi |
|
| 27 |
|
ensym |
|
| 28 |
|
entr |
|
| 29 |
27 28
|
sylan |
|
| 30 |
23 26 29
|
syl2an |
|
| 31 |
30
|
ex |
|
| 32 |
31
|
adantl |
|
| 33 |
|
nneneq |
|
| 34 |
33
|
biimpd |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
22 32 35
|
3syld |
|
| 37 |
19 36
|
exlimddv |
|
| 38 |
|
breq2 |
|
| 39 |
38
|
rabbidv |
|
| 40 |
37 39
|
impbid1 |
|
| 41 |
40
|
ex |
|
| 42 |
8 41
|
dom2d |
|
| 43 |
3 42
|
mpd |
|