Metamath Proof Explorer


Theorem fineqvlem

Description: Lemma for fineqv . (Contributed by Mario Carneiro, 20-Jan-2013) (Proof shortened by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fineqvlem A V ¬ A Fin ω 𝒫 𝒫 A

Proof

Step Hyp Ref Expression
1 pwexg A V 𝒫 A V
2 1 adantr A V ¬ A Fin 𝒫 A V
3 2 pwexd A V ¬ A Fin 𝒫 𝒫 A V
4 ssrab2 d 𝒫 A | d b 𝒫 A
5 elpw2g 𝒫 A V d 𝒫 A | d b 𝒫 𝒫 A d 𝒫 A | d b 𝒫 A
6 2 5 syl A V ¬ A Fin d 𝒫 A | d b 𝒫 𝒫 A d 𝒫 A | d b 𝒫 A
7 4 6 mpbiri A V ¬ A Fin d 𝒫 A | d b 𝒫 𝒫 A
8 7 a1d A V ¬ A Fin b ω d 𝒫 A | d b 𝒫 𝒫 A
9 isinf ¬ A Fin b ω e e A e b
10 9 r19.21bi ¬ A Fin b ω e e A e b
11 10 ad2ant2lr A V ¬ A Fin b ω c ω e e A e b
12 velpw e 𝒫 A e A
13 12 biimpri e A e 𝒫 A
14 13 anim1i e A e b e 𝒫 A e b
15 breq1 d = e d b e b
16 15 elrab e d 𝒫 A | d b e 𝒫 A e b
17 14 16 sylibr e A e b e d 𝒫 A | d b
18 17 eximi e e A e b e e d 𝒫 A | d b
19 11 18 syl A V ¬ A Fin b ω c ω e e d 𝒫 A | d b
20 eleq2 d 𝒫 A | d b = d 𝒫 A | d c e d 𝒫 A | d b e d 𝒫 A | d c
21 20 biimpcd e d 𝒫 A | d b d 𝒫 A | d b = d 𝒫 A | d c e d 𝒫 A | d c
22 21 adantl A V ¬ A Fin b ω c ω e d 𝒫 A | d b d 𝒫 A | d b = d 𝒫 A | d c e d 𝒫 A | d c
23 16 simprbi e d 𝒫 A | d b e b
24 breq1 d = e d c e c
25 24 elrab e d 𝒫 A | d c e 𝒫 A e c
26 25 simprbi e d 𝒫 A | d c e c
27 ensym e b b e
28 entr b e e c b c
29 27 28 sylan e b e c b c
30 23 26 29 syl2an e d 𝒫 A | d b e d 𝒫 A | d c b c
31 30 ex e d 𝒫 A | d b e d 𝒫 A | d c b c
32 31 adantl A V ¬ A Fin b ω c ω e d 𝒫 A | d b e d 𝒫 A | d c b c
33 nneneq b ω c ω b c b = c
34 33 biimpd b ω c ω b c b = c
35 34 ad2antlr A V ¬ A Fin b ω c ω e d 𝒫 A | d b b c b = c
36 22 32 35 3syld A V ¬ A Fin b ω c ω e d 𝒫 A | d b d 𝒫 A | d b = d 𝒫 A | d c b = c
37 19 36 exlimddv A V ¬ A Fin b ω c ω d 𝒫 A | d b = d 𝒫 A | d c b = c
38 breq2 b = c d b d c
39 38 rabbidv b = c d 𝒫 A | d b = d 𝒫 A | d c
40 37 39 impbid1 A V ¬ A Fin b ω c ω d 𝒫 A | d b = d 𝒫 A | d c b = c
41 40 ex A V ¬ A Fin b ω c ω d 𝒫 A | d b = d 𝒫 A | d c b = c
42 8 41 dom2d A V ¬ A Fin 𝒫 𝒫 A V ω 𝒫 𝒫 A
43 3 42 mpd A V ¬ A Fin ω 𝒫 𝒫 A