Metamath Proof Explorer


Theorem finnum

Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion finnum A Fin A dom card

Proof

Step Hyp Ref Expression
1 isfi A Fin x ω A x
2 nnon x ω x On
3 ensym A x x A
4 isnumi x On x A A dom card
5 2 3 4 syl2an x ω A x A dom card
6 5 rexlimiva x ω A x A dom card
7 1 6 sylbi A Fin A dom card