Metamath Proof Explorer


Theorem finrusgrfusgr

Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021)

Ref Expression
Hypothesis finrusgrfusgr.v V = Vtx G
Assertion finrusgrfusgr G RegUSGraph K V Fin G FinUSGraph

Proof

Step Hyp Ref Expression
1 finrusgrfusgr.v V = Vtx G
2 rusgrusgr G RegUSGraph K G USGraph
3 2 anim1i G RegUSGraph K V Fin G USGraph V Fin
4 1 isfusgr G FinUSGraph G USGraph V Fin
5 3 4 sylibr G RegUSGraph K V Fin G FinUSGraph