| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finsumvtxdg2sstep.v |
|
| 2 |
|
finsumvtxdg2sstep.e |
|
| 3 |
|
finsumvtxdg2sstep.k |
|
| 4 |
|
finsumvtxdg2sstep.i |
|
| 5 |
|
finsumvtxdg2sstep.p |
|
| 6 |
|
finsumvtxdg2sstep.s |
|
| 7 |
|
finresfin |
|
| 8 |
7
|
ad2antll |
|
| 9 |
5 8
|
eqeltrid |
|
| 10 |
|
difsnid |
|
| 11 |
10
|
ad2antlr |
|
| 12 |
11
|
eqcomd |
|
| 13 |
12
|
sumeq1d |
|
| 14 |
|
diffi |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
adantl |
|
| 17 |
|
simpr |
|
| 18 |
17
|
adantr |
|
| 19 |
|
neldifsn |
|
| 20 |
19
|
nelir |
|
| 21 |
20
|
a1i |
|
| 22 |
|
dmfi |
|
| 23 |
22
|
ad2antll |
|
| 24 |
10
|
eleq2d |
|
| 25 |
24
|
biimpd |
|
| 26 |
25
|
ad2antlr |
|
| 27 |
26
|
imp |
|
| 28 |
|
eqid |
|
| 29 |
1 2 28
|
vtxdgfisnn0 |
|
| 30 |
23 27 29
|
syl2an2r |
|
| 31 |
30
|
nn0zd |
|
| 32 |
31
|
ralrimiva |
|
| 33 |
|
fsumsplitsnun |
|
| 34 |
16 18 21 32 33
|
syl121anc |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
adantl |
|
| 37 |
17 36
|
csbied |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
oveq2d |
|
| 40 |
13 34 39
|
3eqtrd |
|
| 41 |
40
|
adantr |
|
| 42 |
|
fveq2 |
|
| 43 |
42
|
eleq2d |
|
| 44 |
43
|
cbvrabv |
|
| 45 |
1 2 3 4 5 6 44
|
finsumvtxdg2ssteplem2 |
|
| 46 |
45
|
oveq2d |
|
| 47 |
46
|
adantr |
|
| 48 |
1 2 3 4 5 6 44
|
finsumvtxdg2ssteplem4 |
|
| 49 |
44
|
fveq2i |
|
| 50 |
49
|
oveq2i |
|
| 51 |
50
|
oveq2i |
|
| 52 |
51
|
a1i |
|
| 53 |
47 48 52
|
3eqtrd |
|
| 54 |
|
eqid |
|
| 55 |
1 2 3 4 5 6 54
|
finsumvtxdg2ssteplem1 |
|
| 56 |
55
|
oveq2d |
|
| 57 |
56
|
eqcomd |
|
| 58 |
57
|
adantr |
|
| 59 |
41 53 58
|
3eqtrd |
|
| 60 |
59
|
ex |
|
| 61 |
9 60
|
embantd |
|