Step |
Hyp |
Ref |
Expression |
1 |
|
finsumvtxdg2sstep.v |
|
2 |
|
finsumvtxdg2sstep.e |
|
3 |
|
finsumvtxdg2sstep.k |
|
4 |
|
finsumvtxdg2sstep.i |
|
5 |
|
finsumvtxdg2sstep.p |
|
6 |
|
finsumvtxdg2sstep.s |
|
7 |
|
finresfin |
|
8 |
7
|
ad2antll |
|
9 |
5 8
|
eqeltrid |
|
10 |
|
difsnid |
|
11 |
10
|
ad2antlr |
|
12 |
11
|
eqcomd |
|
13 |
12
|
sumeq1d |
|
14 |
|
diffi |
|
15 |
14
|
adantr |
|
16 |
15
|
adantl |
|
17 |
|
simpr |
|
18 |
17
|
adantr |
|
19 |
|
neldifsn |
|
20 |
19
|
nelir |
|
21 |
20
|
a1i |
|
22 |
|
dmfi |
|
23 |
22
|
ad2antll |
|
24 |
10
|
eleq2d |
|
25 |
24
|
biimpd |
|
26 |
25
|
ad2antlr |
|
27 |
26
|
imp |
|
28 |
|
eqid |
|
29 |
1 2 28
|
vtxdgfisnn0 |
|
30 |
23 27 29
|
syl2an2r |
|
31 |
30
|
nn0zd |
|
32 |
31
|
ralrimiva |
|
33 |
|
fsumsplitsnun |
|
34 |
16 18 21 32 33
|
syl121anc |
|
35 |
|
fveq2 |
|
36 |
35
|
adantl |
|
37 |
17 36
|
csbied |
|
38 |
37
|
adantr |
|
39 |
38
|
oveq2d |
|
40 |
13 34 39
|
3eqtrd |
|
41 |
40
|
adantr |
|
42 |
|
fveq2 |
|
43 |
42
|
eleq2d |
|
44 |
43
|
cbvrabv |
|
45 |
1 2 3 4 5 6 44
|
finsumvtxdg2ssteplem2 |
|
46 |
45
|
oveq2d |
|
47 |
46
|
adantr |
|
48 |
1 2 3 4 5 6 44
|
finsumvtxdg2ssteplem4 |
|
49 |
44
|
fveq2i |
|
50 |
49
|
oveq2i |
|
51 |
50
|
oveq2i |
|
52 |
51
|
a1i |
|
53 |
47 48 52
|
3eqtrd |
|
54 |
|
eqid |
|
55 |
1 2 3 4 5 6 54
|
finsumvtxdg2ssteplem1 |
|
56 |
55
|
oveq2d |
|
57 |
56
|
eqcomd |
|
58 |
57
|
adantr |
|
59 |
41 53 58
|
3eqtrd |
|
60 |
59
|
ex |
|
61 |
9 60
|
embantd |
|