Metamath Proof Explorer


Theorem finsumvtxdg2sstep

Description: Induction step of finsumvtxdg2size : In a finite pseudograph of finite size, the sum of the degrees of all vertices of the pseudograph is twice the size of the pseudograph if the sum of the degrees of all vertices of the subgraph of the pseudograph not containing one of the vertices is twice the size of the subgraph. (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypotheses finsumvtxdg2sstep.v V = Vtx G
finsumvtxdg2sstep.e E = iEdg G
finsumvtxdg2sstep.k K = V N
finsumvtxdg2sstep.i I = i dom E | N E i
finsumvtxdg2sstep.p P = E I
finsumvtxdg2sstep.s S = K P
Assertion finsumvtxdg2sstep G UPGraph N V V Fin E Fin P Fin v K VtxDeg S v = 2 P v V VtxDeg G v = 2 E

Proof

Step Hyp Ref Expression
1 finsumvtxdg2sstep.v V = Vtx G
2 finsumvtxdg2sstep.e E = iEdg G
3 finsumvtxdg2sstep.k K = V N
4 finsumvtxdg2sstep.i I = i dom E | N E i
5 finsumvtxdg2sstep.p P = E I
6 finsumvtxdg2sstep.s S = K P
7 finresfin E Fin E I Fin
8 7 ad2antll G UPGraph N V V Fin E Fin E I Fin
9 5 8 eqeltrid G UPGraph N V V Fin E Fin P Fin
10 difsnid N V V N N = V
11 10 ad2antlr G UPGraph N V V Fin E Fin V N N = V
12 11 eqcomd G UPGraph N V V Fin E Fin V = V N N
13 12 sumeq1d G UPGraph N V V Fin E Fin v V VtxDeg G v = v V N N VtxDeg G v
14 diffi V Fin V N Fin
15 14 adantr V Fin E Fin V N Fin
16 15 adantl G UPGraph N V V Fin E Fin V N Fin
17 simpr G UPGraph N V N V
18 17 adantr G UPGraph N V V Fin E Fin N V
19 neldifsn ¬ N V N
20 19 nelir N V N
21 20 a1i G UPGraph N V V Fin E Fin N V N
22 dmfi E Fin dom E Fin
23 22 ad2antll G UPGraph N V V Fin E Fin dom E Fin
24 10 eleq2d N V v V N N v V
25 24 biimpd N V v V N N v V
26 25 ad2antlr G UPGraph N V V Fin E Fin v V N N v V
27 26 imp G UPGraph N V V Fin E Fin v V N N v V
28 eqid dom E = dom E
29 1 2 28 vtxdgfisnn0 dom E Fin v V VtxDeg G v 0
30 23 27 29 syl2an2r G UPGraph N V V Fin E Fin v V N N VtxDeg G v 0
31 30 nn0zd G UPGraph N V V Fin E Fin v V N N VtxDeg G v
32 31 ralrimiva G UPGraph N V V Fin E Fin v V N N VtxDeg G v
33 fsumsplitsnun V N Fin N V N V N v V N N VtxDeg G v v V N N VtxDeg G v = v V N VtxDeg G v + N / v VtxDeg G v
34 16 18 21 32 33 syl121anc G UPGraph N V V Fin E Fin v V N N VtxDeg G v = v V N VtxDeg G v + N / v VtxDeg G v
35 fveq2 v = N VtxDeg G v = VtxDeg G N
36 35 adantl G UPGraph N V v = N VtxDeg G v = VtxDeg G N
37 17 36 csbied G UPGraph N V N / v VtxDeg G v = VtxDeg G N
38 37 adantr G UPGraph N V V Fin E Fin N / v VtxDeg G v = VtxDeg G N
39 38 oveq2d G UPGraph N V V Fin E Fin v V N VtxDeg G v + N / v VtxDeg G v = v V N VtxDeg G v + VtxDeg G N
40 13 34 39 3eqtrd G UPGraph N V V Fin E Fin v V VtxDeg G v = v V N VtxDeg G v + VtxDeg G N
41 40 adantr G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P v V VtxDeg G v = v V N VtxDeg G v + VtxDeg G N
42 fveq2 j = i E j = E i
43 42 eleq2d j = i N E j N E i
44 43 cbvrabv j dom E | N E j = i dom E | N E i
45 1 2 3 4 5 6 44 finsumvtxdg2ssteplem2 G UPGraph N V V Fin E Fin VtxDeg G N = j dom E | N E j + i dom E | E i = N
46 45 oveq2d G UPGraph N V V Fin E Fin v V N VtxDeg G v + VtxDeg G N = v V N VtxDeg G v + j dom E | N E j + i dom E | E i = N
47 46 adantr G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P v V N VtxDeg G v + VtxDeg G N = v V N VtxDeg G v + j dom E | N E j + i dom E | E i = N
48 1 2 3 4 5 6 44 finsumvtxdg2ssteplem4 G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P v V N VtxDeg G v + j dom E | N E j + i dom E | E i = N = 2 P + j dom E | N E j
49 44 fveq2i j dom E | N E j = i dom E | N E i
50 49 oveq2i P + j dom E | N E j = P + i dom E | N E i
51 50 oveq2i 2 P + j dom E | N E j = 2 P + i dom E | N E i
52 51 a1i G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P 2 P + j dom E | N E j = 2 P + i dom E | N E i
53 47 48 52 3eqtrd G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P v V N VtxDeg G v + VtxDeg G N = 2 P + i dom E | N E i
54 eqid i dom E | N E i = i dom E | N E i
55 1 2 3 4 5 6 54 finsumvtxdg2ssteplem1 G UPGraph N V V Fin E Fin E = P + i dom E | N E i
56 55 oveq2d G UPGraph N V V Fin E Fin 2 E = 2 P + i dom E | N E i
57 56 eqcomd G UPGraph N V V Fin E Fin 2 P + i dom E | N E i = 2 E
58 57 adantr G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P 2 P + i dom E | N E i = 2 E
59 41 53 58 3eqtrd G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P v V VtxDeg G v = 2 E
60 59 ex G UPGraph N V V Fin E Fin v K VtxDeg S v = 2 P v V VtxDeg G v = 2 E
61 9 60 embantd G UPGraph N V V Fin E Fin P Fin v K VtxDeg S v = 2 P v V VtxDeg G v = 2 E