Metamath Proof Explorer


Theorem finsumvtxdg2ssteplem2

Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 12-Dec-2021)

Ref Expression
Hypotheses finsumvtxdg2sstep.v V = Vtx G
finsumvtxdg2sstep.e E = iEdg G
finsumvtxdg2sstep.k K = V N
finsumvtxdg2sstep.i I = i dom E | N E i
finsumvtxdg2sstep.p P = E I
finsumvtxdg2sstep.s S = K P
finsumvtxdg2ssteplem.j J = i dom E | N E i
Assertion finsumvtxdg2ssteplem2 G UPGraph N V V Fin E Fin VtxDeg G N = J + i dom E | E i = N

Proof

Step Hyp Ref Expression
1 finsumvtxdg2sstep.v V = Vtx G
2 finsumvtxdg2sstep.e E = iEdg G
3 finsumvtxdg2sstep.k K = V N
4 finsumvtxdg2sstep.i I = i dom E | N E i
5 finsumvtxdg2sstep.p P = E I
6 finsumvtxdg2sstep.s S = K P
7 finsumvtxdg2ssteplem.j J = i dom E | N E i
8 dmfi E Fin dom E Fin
9 8 adantl V Fin E Fin dom E Fin
10 simpr G UPGraph N V N V
11 eqid dom E = dom E
12 1 2 11 vtxdgfival dom E Fin N V VtxDeg G N = i dom E | N E i + i dom E | E i = N
13 9 10 12 syl2anr G UPGraph N V V Fin E Fin VtxDeg G N = i dom E | N E i + i dom E | E i = N
14 7 eqcomi i dom E | N E i = J
15 14 fveq2i i dom E | N E i = J
16 15 a1i G UPGraph N V V Fin E Fin i dom E | N E i = J
17 16 oveq1d G UPGraph N V V Fin E Fin i dom E | N E i + i dom E | E i = N = J + i dom E | E i = N
18 13 17 eqtrd G UPGraph N V V Fin E Fin VtxDeg G N = J + i dom E | E i = N