Metamath Proof Explorer


Theorem finsumvtxdg2ssteplem2

Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 12-Dec-2021)

Ref Expression
Hypotheses finsumvtxdg2sstep.v V=VtxG
finsumvtxdg2sstep.e E=iEdgG
finsumvtxdg2sstep.k K=VN
finsumvtxdg2sstep.i I=idomE|NEi
finsumvtxdg2sstep.p P=EI
finsumvtxdg2sstep.s S=KP
finsumvtxdg2ssteplem.j J=idomE|NEi
Assertion finsumvtxdg2ssteplem2 GUPGraphNVVFinEFinVtxDegGN=J+idomE|Ei=N

Proof

Step Hyp Ref Expression
1 finsumvtxdg2sstep.v V=VtxG
2 finsumvtxdg2sstep.e E=iEdgG
3 finsumvtxdg2sstep.k K=VN
4 finsumvtxdg2sstep.i I=idomE|NEi
5 finsumvtxdg2sstep.p P=EI
6 finsumvtxdg2sstep.s S=KP
7 finsumvtxdg2ssteplem.j J=idomE|NEi
8 dmfi EFindomEFin
9 8 adantl VFinEFindomEFin
10 simpr GUPGraphNVNV
11 eqid domE=domE
12 1 2 11 vtxdgfival domEFinNVVtxDegGN=idomE|NEi+idomE|Ei=N
13 9 10 12 syl2anr GUPGraphNVVFinEFinVtxDegGN=idomE|NEi+idomE|Ei=N
14 7 eqcomi idomE|NEi=J
15 14 fveq2i idomE|NEi=J
16 15 a1i GUPGraphNVVFinEFinidomE|NEi=J
17 16 oveq1d GUPGraphNVVFinEFinidomE|NEi+idomE|Ei=N=J+idomE|Ei=N
18 13 17 eqtrd GUPGraphNVVFinEFinVtxDegGN=J+idomE|Ei=N