| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finsumvtxdg2sstep.v |
|
| 2 |
|
finsumvtxdg2sstep.e |
|
| 3 |
|
finsumvtxdg2sstep.k |
|
| 4 |
|
finsumvtxdg2sstep.i |
|
| 5 |
|
finsumvtxdg2sstep.p |
|
| 6 |
|
finsumvtxdg2sstep.s |
|
| 7 |
|
finsumvtxdg2ssteplem.j |
|
| 8 |
1 2 3 4 5 6 7
|
vtxdginducedm1fi |
|
| 9 |
8
|
ad2antll |
|
| 10 |
9
|
sumeq2d |
|
| 11 |
|
diffi |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
adantl |
|
| 14 |
5
|
dmeqi |
|
| 15 |
|
finresfin |
|
| 16 |
|
dmfi |
|
| 17 |
15 16
|
syl |
|
| 18 |
14 17
|
eqeltrid |
|
| 19 |
18
|
ad2antll |
|
| 20 |
3
|
eqcomi |
|
| 21 |
20
|
eleq2i |
|
| 22 |
21
|
biimpi |
|
| 23 |
6
|
fveq2i |
|
| 24 |
1
|
fvexi |
|
| 25 |
24
|
difexi |
|
| 26 |
3 25
|
eqeltri |
|
| 27 |
2
|
fvexi |
|
| 28 |
27
|
resex |
|
| 29 |
5 28
|
eqeltri |
|
| 30 |
26 29
|
opvtxfvi |
|
| 31 |
23 30
|
eqtr2i |
|
| 32 |
1 2 3 4 5 6
|
vtxdginducedm1lem1 |
|
| 33 |
32
|
eqcomi |
|
| 34 |
|
eqid |
|
| 35 |
31 33 34
|
vtxdgfisnn0 |
|
| 36 |
35
|
nn0cnd |
|
| 37 |
19 22 36
|
syl2an |
|
| 38 |
|
dmfi |
|
| 39 |
|
rabfi |
|
| 40 |
38 39
|
syl |
|
| 41 |
7 40
|
eqeltrid |
|
| 42 |
|
rabfi |
|
| 43 |
|
hashcl |
|
| 44 |
41 42 43
|
3syl |
|
| 45 |
44
|
nn0cnd |
|
| 46 |
45
|
ad2antll |
|
| 47 |
46
|
adantr |
|
| 48 |
13 37 47
|
fsumadd |
|
| 49 |
10 48
|
eqtrd |
|
| 50 |
3
|
sumeq1i |
|
| 51 |
50
|
eqeq1i |
|
| 52 |
|
oveq1 |
|
| 53 |
51 52
|
sylbi |
|
| 54 |
49 53
|
sylan9eq |
|
| 55 |
54
|
oveq1d |
|
| 56 |
45
|
adantl |
|
| 57 |
56
|
adantr |
|
| 58 |
12 57
|
fsumcl |
|
| 59 |
|
hashcl |
|
| 60 |
41 59
|
syl |
|
| 61 |
60
|
nn0cnd |
|
| 62 |
61
|
adantl |
|
| 63 |
|
rabfi |
|
| 64 |
|
hashcl |
|
| 65 |
38 63 64
|
3syl |
|
| 66 |
65
|
nn0cnd |
|
| 67 |
66
|
adantl |
|
| 68 |
58 62 67
|
add12d |
|
| 69 |
68
|
adantl |
|
| 70 |
1 2 3 4 5 6 7
|
finsumvtxdg2ssteplem3 |
|
| 71 |
70
|
oveq2d |
|
| 72 |
61
|
2timesd |
|
| 73 |
72
|
eqcomd |
|
| 74 |
73
|
ad2antll |
|
| 75 |
69 71 74
|
3eqtrd |
|
| 76 |
75
|
oveq2d |
|
| 77 |
|
2cnd |
|
| 78 |
5 15
|
eqeltrid |
|
| 79 |
|
hashcl |
|
| 80 |
78 79
|
syl |
|
| 81 |
80
|
nn0cnd |
|
| 82 |
77 81
|
mulcld |
|
| 83 |
82
|
ad2antll |
|
| 84 |
58
|
adantl |
|
| 85 |
61 66
|
addcld |
|
| 86 |
85
|
ad2antll |
|
| 87 |
83 84 86
|
addassd |
|
| 88 |
|
2cnd |
|
| 89 |
81
|
ad2antll |
|
| 90 |
61
|
ad2antll |
|
| 91 |
88 89 90
|
adddid |
|
| 92 |
76 87 91
|
3eqtr4d |
|
| 93 |
92
|
adantr |
|
| 94 |
55 93
|
eqtrd |
|