Step |
Hyp |
Ref |
Expression |
1 |
|
finsumvtxdg2sstep.v |
|
2 |
|
finsumvtxdg2sstep.e |
|
3 |
|
finsumvtxdg2sstep.k |
|
4 |
|
finsumvtxdg2sstep.i |
|
5 |
|
finsumvtxdg2sstep.p |
|
6 |
|
finsumvtxdg2sstep.s |
|
7 |
|
finsumvtxdg2ssteplem.j |
|
8 |
1 2 3 4 5 6 7
|
vtxdginducedm1fi |
|
9 |
8
|
ad2antll |
|
10 |
9
|
sumeq2d |
|
11 |
|
diffi |
|
12 |
11
|
adantr |
|
13 |
12
|
adantl |
|
14 |
5
|
dmeqi |
|
15 |
|
finresfin |
|
16 |
|
dmfi |
|
17 |
15 16
|
syl |
|
18 |
14 17
|
eqeltrid |
|
19 |
18
|
ad2antll |
|
20 |
3
|
eqcomi |
|
21 |
20
|
eleq2i |
|
22 |
21
|
biimpi |
|
23 |
6
|
fveq2i |
|
24 |
1
|
fvexi |
|
25 |
24
|
difexi |
|
26 |
3 25
|
eqeltri |
|
27 |
2
|
fvexi |
|
28 |
27
|
resex |
|
29 |
5 28
|
eqeltri |
|
30 |
26 29
|
opvtxfvi |
|
31 |
23 30
|
eqtr2i |
|
32 |
1 2 3 4 5 6
|
vtxdginducedm1lem1 |
|
33 |
32
|
eqcomi |
|
34 |
|
eqid |
|
35 |
31 33 34
|
vtxdgfisnn0 |
|
36 |
35
|
nn0cnd |
|
37 |
19 22 36
|
syl2an |
|
38 |
|
dmfi |
|
39 |
|
rabfi |
|
40 |
38 39
|
syl |
|
41 |
7 40
|
eqeltrid |
|
42 |
|
rabfi |
|
43 |
|
hashcl |
|
44 |
41 42 43
|
3syl |
|
45 |
44
|
nn0cnd |
|
46 |
45
|
ad2antll |
|
47 |
46
|
adantr |
|
48 |
13 37 47
|
fsumadd |
|
49 |
10 48
|
eqtrd |
|
50 |
3
|
sumeq1i |
|
51 |
50
|
eqeq1i |
|
52 |
|
oveq1 |
|
53 |
51 52
|
sylbi |
|
54 |
49 53
|
sylan9eq |
|
55 |
54
|
oveq1d |
|
56 |
45
|
adantl |
|
57 |
56
|
adantr |
|
58 |
12 57
|
fsumcl |
|
59 |
|
hashcl |
|
60 |
41 59
|
syl |
|
61 |
60
|
nn0cnd |
|
62 |
61
|
adantl |
|
63 |
|
rabfi |
|
64 |
|
hashcl |
|
65 |
38 63 64
|
3syl |
|
66 |
65
|
nn0cnd |
|
67 |
66
|
adantl |
|
68 |
58 62 67
|
add12d |
|
69 |
68
|
adantl |
|
70 |
1 2 3 4 5 6 7
|
finsumvtxdg2ssteplem3 |
|
71 |
70
|
oveq2d |
|
72 |
61
|
2timesd |
|
73 |
72
|
eqcomd |
|
74 |
73
|
ad2antll |
|
75 |
69 71 74
|
3eqtrd |
|
76 |
75
|
oveq2d |
|
77 |
|
2cnd |
|
78 |
5 15
|
eqeltrid |
|
79 |
|
hashcl |
|
80 |
78 79
|
syl |
|
81 |
80
|
nn0cnd |
|
82 |
77 81
|
mulcld |
|
83 |
82
|
ad2antll |
|
84 |
58
|
adantl |
|
85 |
61 66
|
addcld |
|
86 |
85
|
ad2antll |
|
87 |
83 84 86
|
addassd |
|
88 |
|
2cnd |
|
89 |
81
|
ad2antll |
|
90 |
61
|
ad2antll |
|
91 |
88 89 90
|
adddid |
|
92 |
76 87 91
|
3eqtr4d |
|
93 |
92
|
adantr |
|
94 |
55 93
|
eqtrd |
|