Metamath Proof Explorer


Theorem fipwss

Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fipwss A 𝒫 X fi A 𝒫 X

Proof

Step Hyp Ref Expression
1 fiuni A V A = fi A
2 1 sseq1d A V A X fi A X
3 sspwuni A 𝒫 X A X
4 sspwuni fi A 𝒫 X fi A X
5 2 3 4 3bitr4g A V A 𝒫 X fi A 𝒫 X
6 5 biimpa A V A 𝒫 X fi A 𝒫 X
7 fvprc ¬ A V fi A =
8 0ss 𝒫 X
9 7 8 eqsstrdi ¬ A V fi A 𝒫 X
10 9 adantr ¬ A V A 𝒫 X fi A 𝒫 X
11 6 10 pm2.61ian A 𝒫 X fi A 𝒫 X