Metamath Proof Explorer


Theorem fipwuni

Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of A . (Contributed by Mario Carneiro, 24-Nov-2013) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion fipwuni fiA𝒫A

Proof

Step Hyp Ref Expression
1 uniexg AVAV
2 1 pwexd AV𝒫AV
3 pwuni A𝒫A
4 fiss 𝒫AVA𝒫AfiAfi𝒫A
5 2 3 4 sylancl AVfiAfi𝒫A
6 ssinss1 xAxyA
7 vex xV
8 7 elpw x𝒫AxA
9 7 inex1 xyV
10 9 elpw xy𝒫AxyA
11 6 8 10 3imtr4i x𝒫Axy𝒫A
12 11 adantr x𝒫Ay𝒫Axy𝒫A
13 12 rgen2 x𝒫Ay𝒫Axy𝒫A
14 inficl 𝒫AVx𝒫Ay𝒫Axy𝒫Afi𝒫A=𝒫A
15 2 14 syl AVx𝒫Ay𝒫Axy𝒫Afi𝒫A=𝒫A
16 13 15 mpbii AVfi𝒫A=𝒫A
17 5 16 sseqtrd AVfiA𝒫A
18 fvprc ¬AVfiA=
19 0ss 𝒫A
20 18 19 eqsstrdi ¬AVfiA𝒫A
21 17 20 pm2.61i fiA𝒫A