Metamath Proof Explorer


Theorem fislw

Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of P dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis fislw.1 X = Base G
Assertion fislw G Grp X Fin P H P pSyl G H SubGrp G H = P P pCnt X

Proof

Step Hyp Ref Expression
1 fislw.1 X = Base G
2 simpr G Grp X Fin P H P pSyl G H P pSyl G
3 slwsubg H P pSyl G H SubGrp G
4 2 3 syl G Grp X Fin P H P pSyl G H SubGrp G
5 simpl2 G Grp X Fin P H P pSyl G X Fin
6 1 5 2 slwhash G Grp X Fin P H P pSyl G H = P P pCnt X
7 4 6 jca G Grp X Fin P H P pSyl G H SubGrp G H = P P pCnt X
8 simpl3 G Grp X Fin P H SubGrp G H = P P pCnt X P
9 simprl G Grp X Fin P H SubGrp G H = P P pCnt X H SubGrp G
10 simpl2 G Grp X Fin P H SubGrp G H = P P pCnt X X Fin
11 10 adantr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k X Fin
12 simprl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k SubGrp G
13 1 subgss k SubGrp G k X
14 12 13 syl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k X
15 11 14 ssfid G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k Fin
16 simprrl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H k
17 ssdomg k Fin H k H k
18 15 16 17 sylc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H k
19 simprrr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pGrp G 𝑠 k
20 eqid G 𝑠 k = G 𝑠 k
21 20 subggrp k SubGrp G G 𝑠 k Grp
22 12 21 syl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k G 𝑠 k Grp
23 20 subgbas k SubGrp G k = Base G 𝑠 k
24 12 23 syl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k = Base G 𝑠 k
25 24 15 eqeltrrd G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k Base G 𝑠 k Fin
26 eqid Base G 𝑠 k = Base G 𝑠 k
27 26 pgpfi G 𝑠 k Grp Base G 𝑠 k Fin P pGrp G 𝑠 k P n 0 Base G 𝑠 k = P n
28 22 25 27 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pGrp G 𝑠 k P n 0 Base G 𝑠 k = P n
29 19 28 mpbid G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P n 0 Base G 𝑠 k = P n
30 29 simpld G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P
31 prmnn P P
32 30 31 syl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P
33 32 nnred G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P
34 32 nnge1d G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k 1 P
35 eqid 0 G = 0 G
36 35 subg0cl k SubGrp G 0 G k
37 12 36 syl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k 0 G k
38 37 ne0d G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k
39 hashnncl k Fin k k
40 15 39 syl G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k k
41 38 40 mpbird G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k
42 30 41 pccld G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pCnt k 0
43 42 nn0zd G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pCnt k
44 simpl1 G Grp X Fin P H SubGrp G H = P P pCnt X G Grp
45 1 grpbn0 G Grp X
46 44 45 syl G Grp X Fin P H SubGrp G H = P P pCnt X X
47 hashnncl X Fin X X
48 10 47 syl G Grp X Fin P H SubGrp G H = P P pCnt X X X
49 46 48 mpbird G Grp X Fin P H SubGrp G H = P P pCnt X X
50 8 49 pccld G Grp X Fin P H SubGrp G H = P P pCnt X P pCnt X 0
51 50 adantr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pCnt X 0
52 51 nn0zd G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pCnt X
53 oveq1 p = P p pCnt k = P pCnt k
54 oveq1 p = P p pCnt X = P pCnt X
55 53 54 breq12d p = P p pCnt k p pCnt X P pCnt k P pCnt X
56 1 lagsubg k SubGrp G X Fin k X
57 12 11 56 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k X
58 41 nnzd G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k
59 49 adantr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k X
60 59 nnzd G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k X
61 pc2dvds k X k X p p pCnt k p pCnt X
62 58 60 61 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k X p p pCnt k p pCnt X
63 57 62 mpbid G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k p p pCnt k p pCnt X
64 55 63 30 rspcdva G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pCnt k P pCnt X
65 eluz2 P pCnt X P pCnt k P pCnt k P pCnt X P pCnt k P pCnt X
66 43 52 64 65 syl3anbrc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P pCnt X P pCnt k
67 33 34 66 leexp2ad G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k P P pCnt k P P pCnt X
68 29 simprd G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k n 0 Base G 𝑠 k = P n
69 24 fveqeq2d G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k = P n Base G 𝑠 k = P n
70 69 rexbidv G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k n 0 k = P n n 0 Base G 𝑠 k = P n
71 68 70 mpbird G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k n 0 k = P n
72 pcprmpw P k n 0 k = P n k = P P pCnt k
73 30 41 72 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k n 0 k = P n k = P P pCnt k
74 71 73 mpbid G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k = P P pCnt k
75 simplrr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H = P P pCnt X
76 67 74 75 3brtr4d G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k H
77 1 subgss H SubGrp G H X
78 77 ad2antrl G Grp X Fin P H SubGrp G H = P P pCnt X H X
79 10 78 ssfid G Grp X Fin P H SubGrp G H = P P pCnt X H Fin
80 79 adantr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H Fin
81 hashdom k Fin H Fin k H k H
82 15 80 81 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k H k H
83 76 82 mpbid G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k k H
84 sbth H k k H H k
85 18 83 84 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H k
86 fisseneq k Fin H k H k H = k
87 15 16 85 86 syl3anc G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H = k
88 87 expr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H = k
89 eqid G 𝑠 H = G 𝑠 H
90 89 subgbas H SubGrp G H = Base G 𝑠 H
91 90 ad2antrl G Grp X Fin P H SubGrp G H = P P pCnt X H = Base G 𝑠 H
92 91 fveq2d G Grp X Fin P H SubGrp G H = P P pCnt X H = Base G 𝑠 H
93 simprr G Grp X Fin P H SubGrp G H = P P pCnt X H = P P pCnt X
94 92 93 eqtr3d G Grp X Fin P H SubGrp G H = P P pCnt X Base G 𝑠 H = P P pCnt X
95 oveq2 n = P pCnt X P n = P P pCnt X
96 95 rspceeqv P pCnt X 0 Base G 𝑠 H = P P pCnt X n 0 Base G 𝑠 H = P n
97 50 94 96 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X n 0 Base G 𝑠 H = P n
98 89 subggrp H SubGrp G G 𝑠 H Grp
99 98 ad2antrl G Grp X Fin P H SubGrp G H = P P pCnt X G 𝑠 H Grp
100 91 79 eqeltrrd G Grp X Fin P H SubGrp G H = P P pCnt X Base G 𝑠 H Fin
101 eqid Base G 𝑠 H = Base G 𝑠 H
102 101 pgpfi G 𝑠 H Grp Base G 𝑠 H Fin P pGrp G 𝑠 H P n 0 Base G 𝑠 H = P n
103 99 100 102 syl2anc G Grp X Fin P H SubGrp G H = P P pCnt X P pGrp G 𝑠 H P n 0 Base G 𝑠 H = P n
104 8 97 103 mpbir2and G Grp X Fin P H SubGrp G H = P P pCnt X P pGrp G 𝑠 H
105 104 adantr G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G P pGrp G 𝑠 H
106 oveq2 H = k G 𝑠 H = G 𝑠 k
107 106 breq2d H = k P pGrp G 𝑠 H P pGrp G 𝑠 k
108 eqimss H = k H k
109 108 biantrurd H = k P pGrp G 𝑠 k H k P pGrp G 𝑠 k
110 107 109 bitrd H = k P pGrp G 𝑠 H H k P pGrp G 𝑠 k
111 105 110 syl5ibcom G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H = k H k P pGrp G 𝑠 k
112 88 111 impbid G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H = k
113 112 ralrimiva G Grp X Fin P H SubGrp G H = P P pCnt X k SubGrp G H k P pGrp G 𝑠 k H = k
114 isslw H P pSyl G P H SubGrp G k SubGrp G H k P pGrp G 𝑠 k H = k
115 8 9 113 114 syl3anbrc G Grp X Fin P H SubGrp G H = P P pCnt X H P pSyl G
116 7 115 impbida G Grp X Fin P H P pSyl G H SubGrp G H = P P pCnt X