Metamath Proof Explorer


Theorem fisseneq

Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008)

Ref Expression
Assertion fisseneq B Fin A B A B A = B

Proof

Step Hyp Ref Expression
1 df-pss A B A B A B
2 pssinf A B A B ¬ B Fin
3 2 expcom A B A B ¬ B Fin
4 1 3 syl5bir A B A B A B ¬ B Fin
5 4 expdimp A B A B A B ¬ B Fin
6 5 necon4ad A B A B B Fin A = B
7 6 3impia A B A B B Fin A = B
8 7 3com13 B Fin A B A B A = B