Metamath Proof Explorer


Theorem fissn0dvds

Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion fissn0dvds Z Z Fin 0 Z n m Z m n

Proof

Step Hyp Ref Expression
1 simp1 Z Z Fin 0 Z Z
2 simp2 Z Z Fin 0 Z Z Fin
3 eqid k Z k = k Z k
4 simp3 Z Z Fin 0 Z 0 Z
5 1 2 3 4 absprodnn Z Z Fin 0 Z k Z k
6 breq2 n = k Z k m n m k Z k
7 6 ralbidv n = k Z k m Z m n m Z m k Z k
8 7 adantl Z Z Fin 0 Z n = k Z k m Z m n m Z m k Z k
9 1 2 3 absproddvds Z Z Fin 0 Z m Z m k Z k
10 5 8 9 rspcedvd Z Z Fin 0 Z n m Z m n