Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
dfss3 |
|
3 |
|
eluni2 |
|
4 |
3
|
ralbii |
|
5 |
2 4
|
sylbb |
|
6 |
5
|
adantr |
|
7 |
|
eleq2 |
|
8 |
7
|
ac6sfi |
|
9 |
1 6 8
|
syl2anc |
|
10 |
|
fimass |
|
11 |
|
vex |
|
12 |
11
|
imaex |
|
13 |
12
|
elpw |
|
14 |
10 13
|
sylibr |
|
15 |
14
|
ad2antrl |
|
16 |
|
ffun |
|
17 |
16
|
ad2antrl |
|
18 |
|
simplr |
|
19 |
|
imafi |
|
20 |
17 18 19
|
syl2anc |
|
21 |
15 20
|
elind |
|
22 |
|
ffn |
|
23 |
22
|
adantr |
|
24 |
|
ssidd |
|
25 |
|
simpr |
|
26 |
|
fnfvima |
|
27 |
23 24 25 26
|
syl3anc |
|
28 |
|
elssuni |
|
29 |
27 28
|
syl |
|
30 |
29
|
sseld |
|
31 |
30
|
ralimdva |
|
32 |
31
|
imp |
|
33 |
|
dfss3 |
|
34 |
32 33
|
sylibr |
|
35 |
34
|
adantl |
|
36 |
|
unieq |
|
37 |
36
|
sseq2d |
|
38 |
37
|
rspcev |
|
39 |
21 35 38
|
syl2anc |
|
40 |
9 39
|
exlimddv |
|