Metamath Proof Explorer


Theorem fisuppfi

Description: A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses fisuppfi.1 φ A Fin
fisuppfi.2 φ F : A B
Assertion fisuppfi φ F -1 C Fin

Proof

Step Hyp Ref Expression
1 fisuppfi.1 φ A Fin
2 fisuppfi.2 φ F : A B
3 cnvimass F -1 C dom F
4 3 2 fssdm φ F -1 C A
5 1 4 ssfid φ F -1 C Fin