Metamath Proof Explorer


Theorem fiufl

Description: A finite set satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion fiufl X Fin X UFL

Proof

Step Hyp Ref Expression
1 pwfi X Fin 𝒫 X Fin
2 pwfi 𝒫 X Fin 𝒫 𝒫 X Fin
3 finnum 𝒫 𝒫 X Fin 𝒫 𝒫 X dom card
4 numufl 𝒫 𝒫 X dom card X UFL
5 3 4 syl 𝒫 𝒫 X Fin X UFL
6 2 5 sylbi 𝒫 X Fin X UFL
7 1 6 sylbi X Fin X UFL