Metamath Proof Explorer


Theorem fiuni

Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fiuni A V A = fi A

Proof

Step Hyp Ref Expression
1 ssfii A V A fi A
2 1 unissd A V A fi A
3 fipwuni fi A 𝒫 A
4 3 unissi fi A 𝒫 A
5 unipw 𝒫 A = A
6 4 5 sseqtri fi A A
7 6 a1i A V fi A A
8 2 7 eqssd A V A = fi A