Step |
Hyp |
Ref |
Expression |
1 |
|
uffix |
|
2 |
1
|
simprd |
|
3 |
1
|
simpld |
|
4 |
|
fgcl |
|
5 |
3 4
|
syl |
|
6 |
2 5
|
eqeltrd |
|
7 |
|
undif2 |
|
8 |
|
elpwi |
|
9 |
|
ssequn1 |
|
10 |
8 9
|
sylib |
|
11 |
7 10
|
eqtr2id |
|
12 |
11
|
eleq2d |
|
13 |
12
|
biimpac |
|
14 |
|
elun |
|
15 |
13 14
|
sylib |
|
16 |
15
|
adantll |
|
17 |
|
ibar |
|
18 |
17
|
adantl |
|
19 |
|
difss |
|
20 |
|
elpw2g |
|
21 |
19 20
|
mpbiri |
|
22 |
21
|
ad2antrr |
|
23 |
22
|
biantrurd |
|
24 |
18 23
|
orbi12d |
|
25 |
16 24
|
mpbid |
|
26 |
25
|
ralrimiva |
|
27 |
|
eleq2 |
|
28 |
27
|
elrab |
|
29 |
|
eleq2 |
|
30 |
29
|
elrab |
|
31 |
28 30
|
orbi12i |
|
32 |
31
|
ralbii |
|
33 |
26 32
|
sylibr |
|
34 |
|
isufil |
|
35 |
6 33 34
|
sylanbrc |
|