Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009) (Revised by Mario Carneiro, 12-Dec-2013) (Revised by Stefan O'Rear, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fixufil | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uffix | |
|
| 2 | 1 | simprd | |
| 3 | 1 | simpld | |
| 4 | fgcl | |
|
| 5 | 3 4 | syl | |
| 6 | 2 5 | eqeltrd | |
| 7 | undif2 | |
|
| 8 | elpwi | |
|
| 9 | ssequn1 | |
|
| 10 | 8 9 | sylib | |
| 11 | 7 10 | eqtr2id | |
| 12 | 11 | eleq2d | |
| 13 | 12 | biimpac | |
| 14 | elun | |
|
| 15 | 13 14 | sylib | |
| 16 | 15 | adantll | |
| 17 | ibar | |
|
| 18 | 17 | adantl | |
| 19 | difss | |
|
| 20 | elpw2g | |
|
| 21 | 19 20 | mpbiri | |
| 22 | 21 | ad2antrr | |
| 23 | 22 | biantrurd | |
| 24 | 18 23 | orbi12d | |
| 25 | 16 24 | mpbid | |
| 26 | 25 | ralrimiva | |
| 27 | eleq2 | |
|
| 28 | 27 | elrab | |
| 29 | eleq2 | |
|
| 30 | 29 | elrab | |
| 31 | 28 30 | orbi12i | |
| 32 | 31 | ralbii | |
| 33 | 26 32 | sylibr | |
| 34 | isufil | |
|
| 35 | 6 33 34 | sylanbrc | |