Metamath Proof Explorer


Theorem fladdz

Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005) (Proof shortened by Fan Zheng, 16-Jun-2016)

Ref Expression
Assertion fladdz A N A + N = A + N

Proof

Step Hyp Ref Expression
1 reflcl A A
2 1 adantr A N A
3 simpl A N A
4 simpr A N N
5 4 zred A N N
6 flle A A A
7 6 adantr A N A A
8 2 3 5 7 leadd1dd A N A + N A + N
9 1red A N 1
10 2 9 readdcld A N A + 1
11 flltp1 A A < A + 1
12 11 adantr A N A < A + 1
13 3 10 5 12 ltadd1dd A N A + N < A + 1 + N
14 2 recnd A N A
15 1cnd A N 1
16 5 recnd A N N
17 14 15 16 add32d A N A + 1 + N = A + N + 1
18 13 17 breqtrd A N A + N < A + N + 1
19 3 5 readdcld A N A + N
20 3 flcld A N A
21 20 4 zaddcld A N A + N
22 flbi A + N A + N A + N = A + N A + N A + N A + N < A + N + 1
23 19 21 22 syl2anc A N A + N = A + N A + N A + N A + N < A + N + 1
24 8 18 23 mpbir2and A N A + N = A + N