Step |
Hyp |
Ref |
Expression |
1 |
|
cgracol.p |
|
2 |
|
cgracol.i |
|
3 |
|
cgracol.m |
|
4 |
|
cgracol.g |
|
5 |
|
cgracol.a |
|
6 |
|
cgracol.b |
|
7 |
|
cgracol.c |
|
8 |
|
cgracol.d |
|
9 |
|
cgracol.e |
|
10 |
|
cgracol.f |
|
11 |
|
flatcgra.1 |
|
12 |
|
flatcgra.2 |
|
13 |
|
flatcgra.3 |
|
14 |
|
flatcgra.4 |
|
15 |
|
flatcgra.5 |
|
16 |
|
flatcgra.6 |
|
17 |
|
eqid |
|
18 |
4
|
ad3antrrr |
|
19 |
5
|
ad3antrrr |
|
20 |
6
|
ad3antrrr |
|
21 |
7
|
ad3antrrr |
|
22 |
|
simpllr |
|
23 |
9
|
ad3antrrr |
|
24 |
|
simplr |
|
25 |
|
simprlr |
|
26 |
1 3 2 18 23 22 20 19 25
|
tgcgrcomlr |
|
27 |
26
|
eqcomd |
|
28 |
|
simprrr |
|
29 |
28
|
eqcomd |
|
30 |
10
|
ad3antrrr |
|
31 |
8
|
ad3antrrr |
|
32 |
16
|
ad3antrrr |
|
33 |
15
|
ad3antrrr |
|
34 |
1 3 2 4 8 9 10 12
|
tgbtwncom |
|
35 |
34
|
ad3antrrr |
|
36 |
|
simprll |
|
37 |
|
simprrl |
|
38 |
1 2 18 30 23 31 22 24 32 33 35 36 37
|
tgbtwnconn22 |
|
39 |
11
|
ad3antrrr |
|
40 |
1 3 2 18 22 23 24 19 20 21 38 39 26 28
|
tgcgrextend |
|
41 |
40
|
eqcomd |
|
42 |
1 3 2 18 19 21 22 24 41
|
tgcgrcomlr |
|
43 |
1 3 17 18 19 20 21 22 23 24 27 29 42
|
trgcgr |
|
44 |
25
|
eqcomd |
|
45 |
13
|
necomd |
|
46 |
45
|
ad3antrrr |
|
47 |
1 3 2 18 20 19 23 22 44 46
|
tgcgrneq |
|
48 |
47
|
necomd |
|
49 |
1 2 18 30 23 22 31 32 36 35
|
tgbtwnconn2 |
|
50 |
48 33 49
|
3jca |
|
51 |
|
eqid |
|
52 |
1 2 51 22 31 23 18
|
ishlg |
|
53 |
50 52
|
mpbird |
|
54 |
14
|
necomd |
|
55 |
54
|
ad3antrrr |
|
56 |
1 3 2 18 20 21 23 24 29 55
|
tgcgrneq |
|
57 |
56
|
necomd |
|
58 |
12
|
ad3antrrr |
|
59 |
1 2 18 31 23 24 30 33 37 58
|
tgbtwnconn2 |
|
60 |
57 32 59
|
3jca |
|
61 |
1 2 51 24 30 23 18
|
ishlg |
|
62 |
60 61
|
mpbird |
|
63 |
43 53 62
|
3jca |
|
64 |
1 3 2 4 10 9 6 5
|
axtgsegcon |
|
65 |
1 3 2 4 8 9 6 7
|
axtgsegcon |
|
66 |
|
reeanv |
|
67 |
64 65 66
|
sylanbrc |
|
68 |
63 67
|
reximddv2 |
|
69 |
1 2 51 4 5 6 7 8 9 10
|
iscgra |
|
70 |
68 69
|
mpbird |
|