Metamath Proof Explorer


Theorem flbi

Description: A condition equivalent to floor. (Contributed by NM, 11-Mar-2005) (Revised by Mario Carneiro, 2-Nov-2013)

Ref Expression
Assertion flbi A B A = B B A A < B + 1

Proof

Step Hyp Ref Expression
1 flval A A = ι x | x A A < x + 1
2 1 eqeq1d A A = B ι x | x A A < x + 1 = B
3 2 adantr A B A = B ι x | x A A < x + 1 = B
4 rebtwnz A ∃! x x A A < x + 1
5 breq1 x = B x A B A
6 oveq1 x = B x + 1 = B + 1
7 6 breq2d x = B A < x + 1 A < B + 1
8 5 7 anbi12d x = B x A A < x + 1 B A A < B + 1
9 8 riota2 B ∃! x x A A < x + 1 B A A < B + 1 ι x | x A A < x + 1 = B
10 4 9 sylan2 B A B A A < B + 1 ι x | x A A < x + 1 = B
11 10 ancoms A B B A A < B + 1 ι x | x A A < x + 1 = B
12 3 11 bitr4d A B A = B B A A < B + 1