Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The floor and ceiling functions
flbi2
Next ⟩
adddivflid
Metamath Proof Explorer
Ascii
Unicode
Theorem
flbi2
Description:
A condition equivalent to floor.
(Contributed by
NM
, 15-Aug-2008)
Ref
Expression
Assertion
flbi2
⊢
N
∈
ℤ
∧
F
∈
ℝ
→
N
+
F
=
N
↔
0
≤
F
∧
F
<
1
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
2
readdcl
⊢
N
∈
ℝ
∧
F
∈
ℝ
→
N
+
F
∈
ℝ
3
1
2
sylan
⊢
N
∈
ℤ
∧
F
∈
ℝ
→
N
+
F
∈
ℝ
4
simpl
⊢
N
∈
ℤ
∧
F
∈
ℝ
→
N
∈
ℤ
5
flbi
⊢
N
+
F
∈
ℝ
∧
N
∈
ℤ
→
N
+
F
=
N
↔
N
≤
N
+
F
∧
N
+
F
<
N
+
1
6
3
4
5
syl2anc
⊢
N
∈
ℤ
∧
F
∈
ℝ
→
N
+
F
=
N
↔
N
≤
N
+
F
∧
N
+
F
<
N
+
1
7
addge01
⊢
N
∈
ℝ
∧
F
∈
ℝ
→
0
≤
F
↔
N
≤
N
+
F
8
1re
⊢
1
∈
ℝ
9
ltadd2
⊢
F
∈
ℝ
∧
1
∈
ℝ
∧
N
∈
ℝ
→
F
<
1
↔
N
+
F
<
N
+
1
10
8
9
mp3an2
⊢
F
∈
ℝ
∧
N
∈
ℝ
→
F
<
1
↔
N
+
F
<
N
+
1
11
10
ancoms
⊢
N
∈
ℝ
∧
F
∈
ℝ
→
F
<
1
↔
N
+
F
<
N
+
1
12
7
11
anbi12d
⊢
N
∈
ℝ
∧
F
∈
ℝ
→
0
≤
F
∧
F
<
1
↔
N
≤
N
+
F
∧
N
+
F
<
N
+
1
13
1
12
sylan
⊢
N
∈
ℤ
∧
F
∈
ℝ
→
0
≤
F
∧
F
<
1
↔
N
≤
N
+
F
∧
N
+
F
<
N
+
1
14
6
13
bitr4d
⊢
N
∈
ℤ
∧
F
∈
ℝ
→
N
+
F
=
N
↔
0
≤
F
∧
F
<
1