Metamath Proof Explorer


Theorem flbi2

Description: A condition equivalent to floor. (Contributed by NM, 15-Aug-2008)

Ref Expression
Assertion flbi2 N F N + F = N 0 F F < 1

Proof

Step Hyp Ref Expression
1 zre N N
2 readdcl N F N + F
3 1 2 sylan N F N + F
4 simpl N F N
5 flbi N + F N N + F = N N N + F N + F < N + 1
6 3 4 5 syl2anc N F N + F = N N N + F N + F < N + 1
7 addge01 N F 0 F N N + F
8 1re 1
9 ltadd2 F 1 N F < 1 N + F < N + 1
10 8 9 mp3an2 F N F < 1 N + F < N + 1
11 10 ancoms N F F < 1 N + F < N + 1
12 7 11 anbi12d N F 0 F F < 1 N N + F N + F < N + 1
13 1 12 sylan N F 0 F F < 1 N N + F N + F < N + 1
14 6 13 bitr4d N F N + F = N 0 F F < 1