Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Commutative rings
fldcrng
Next ⟩
isfld2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fldcrng
Description:
A field is a commutative ring.
(Contributed by
Jeff Madsen
, 8-Jun-2010)
Ref
Expression
Assertion
fldcrng
⊢
K
∈
Fld
→
K
∈
CRingOps
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
1
st
⁡
K
=
1
st
⁡
K
2
eqid
⊢
2
nd
⁡
K
=
2
nd
⁡
K
3
eqid
⊢
ran
⁡
1
st
⁡
K
=
ran
⁡
1
st
⁡
K
4
eqid
⊢
GId
⁡
1
st
⁡
K
=
GId
⁡
1
st
⁡
K
5
1
2
3
4
drngoi
⊢
K
∈
DivRingOps
→
K
∈
RingOps
∧
2
nd
⁡
K
↾
ran
⁡
1
st
⁡
K
∖
GId
⁡
1
st
⁡
K
×
ran
⁡
1
st
⁡
K
∖
GId
⁡
1
st
⁡
K
∈
GrpOp
6
5
simpld
⊢
K
∈
DivRingOps
→
K
∈
RingOps
7
6
anim1i
⊢
K
∈
DivRingOps
∧
K
∈
Com2
→
K
∈
RingOps
∧
K
∈
Com2
8
df-fld
⊢
Fld
=
DivRingOps
∩
Com2
9
8
elin2
⊢
K
∈
Fld
↔
K
∈
DivRingOps
∧
K
∈
Com2
10
iscrngo
⊢
K
∈
CRingOps
↔
K
∈
RingOps
∧
K
∈
Com2
11
7
9
10
3imtr4i
⊢
K
∈
Fld
→
K
∈
CRingOps