Metamath Proof Explorer


Theorem fldgenss

Description: Generated subfields preserve subset ordering. ( see lspss and spanss ) (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 B = Base F
fldgenval.2 φ F DivRing
fldgenval.3 φ S B
fldgenss.t φ T S
Assertion fldgenss Could not format assertion : No typesetting found for |- ( ph -> ( F fldGen T ) C_ ( F fldGen S ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 fldgenval.1 B = Base F
2 fldgenval.2 φ F DivRing
3 fldgenval.3 φ S B
4 fldgenss.t φ T S
5 4 adantr φ S a T S
6 simpr φ S a S a
7 5 6 sstrd φ S a T a
8 7 ex φ S a T a
9 8 adantr φ a SubDRing F S a T a
10 9 ss2rabdv φ a SubDRing F | S a a SubDRing F | T a
11 intss a SubDRing F | S a a SubDRing F | T a a SubDRing F | T a a SubDRing F | S a
12 10 11 syl φ a SubDRing F | T a a SubDRing F | S a
13 4 3 sstrd φ T B
14 1 2 13 fldgenval Could not format ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) : No typesetting found for |- ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) with typecode |-
15 1 2 3 fldgenval Could not format ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) : No typesetting found for |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-
16 12 14 15 3sstr4d Could not format ( ph -> ( F fldGen T ) C_ ( F fldGen S ) ) : No typesetting found for |- ( ph -> ( F fldGen T ) C_ ( F fldGen S ) ) with typecode |-