Metamath Proof Explorer


Theorem fldgenssp

Description: The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses fldgenval.1 B = Base F
fldgenval.2 φ F DivRing
fldgenidfld.s φ S SubDRing F
fldgenssp.t φ T S
Assertion fldgenssp Could not format assertion : No typesetting found for |- ( ph -> ( F fldGen T ) C_ S ) with typecode |-

Proof

Step Hyp Ref Expression
1 fldgenval.1 B = Base F
2 fldgenval.2 φ F DivRing
3 fldgenidfld.s φ S SubDRing F
4 fldgenssp.t φ T S
5 issdrg S SubDRing F F DivRing S SubRing F F 𝑠 S DivRing
6 3 5 sylib φ F DivRing S SubRing F F 𝑠 S DivRing
7 6 simp2d φ S SubRing F
8 1 subrgss S SubRing F S B
9 7 8 syl φ S B
10 4 9 sstrd φ T B
11 1 2 10 fldgenval Could not format ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) : No typesetting found for |- ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) with typecode |-
12 sseq2 a = S T a T S
13 12 3 4 elrabd φ S a SubDRing F | T a
14 intss1 S a SubDRing F | T a a SubDRing F | T a S
15 13 14 syl φ a SubDRing F | T a S
16 11 15 eqsstrd Could not format ( ph -> ( F fldGen T ) C_ S ) : No typesetting found for |- ( ph -> ( F fldGen T ) C_ S ) with typecode |-