Metamath Proof Explorer


Theorem fldgenssv

Description: A generated subfield is a subset of the field's base. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses fldgenval.1 B = Base F
fldgenval.2 φ F DivRing
fldgenval.3 φ S B
Assertion fldgenssv Could not format assertion : No typesetting found for |- ( ph -> ( F fldGen S ) C_ B ) with typecode |-

Proof

Step Hyp Ref Expression
1 fldgenval.1 B = Base F
2 fldgenval.2 φ F DivRing
3 fldgenval.3 φ S B
4 1 2 3 fldgenval Could not format ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) : No typesetting found for |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-
5 sseq2 a = B S a S B
6 1 sdrgid F DivRing B SubDRing F
7 2 6 syl φ B SubDRing F
8 5 7 3 elrabd φ B a SubDRing F | S a
9 intss1 B a SubDRing F | S a a SubDRing F | S a B
10 8 9 syl φ a SubDRing F | S a B
11 4 10 eqsstrd Could not format ( ph -> ( F fldGen S ) C_ B ) : No typesetting found for |- ( ph -> ( F fldGen S ) C_ B ) with typecode |-