Metamath Proof Explorer


Theorem fldgenval

Description: Value of the field generating function: ( F fldGen S ) is the smallest sub-division-ring of F containing S . (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 B = Base F
fldgenval.2 φ F DivRing
fldgenval.3 φ S B
Assertion fldgenval Could not format assertion : No typesetting found for |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-

Proof

Step Hyp Ref Expression
1 fldgenval.1 B = Base F
2 fldgenval.2 φ F DivRing
3 fldgenval.3 φ S B
4 2 elexd φ F V
5 1 fvexi B V
6 5 a1i φ B V
7 6 3 ssexd φ S V
8 1 sdrgid F DivRing B SubDRing F
9 2 8 syl φ B SubDRing F
10 sseq2 a = B S a S B
11 10 adantl φ a = B S a S B
12 9 11 3 rspcedvd φ a SubDRing F S a
13 intexrab a SubDRing F S a a SubDRing F | S a V
14 12 13 sylib φ a SubDRing F | S a V
15 simpl f = F s = S f = F
16 15 fveq2d f = F s = S SubDRing f = SubDRing F
17 simpr f = F s = S s = S
18 17 sseq1d f = F s = S s a S a
19 16 18 rabeqbidv f = F s = S a SubDRing f | s a = a SubDRing F | S a
20 19 inteqd f = F s = S a SubDRing f | s a = a SubDRing F | S a
21 df-fldgen Could not format fldGen = ( f e. _V , s e. _V |-> |^| { a e. ( SubDRing ` f ) | s C_ a } ) : No typesetting found for |- fldGen = ( f e. _V , s e. _V |-> |^| { a e. ( SubDRing ` f ) | s C_ a } ) with typecode |-
22 20 21 ovmpoga Could not format ( ( F e. _V /\ S e. _V /\ |^| { a e. ( SubDRing ` F ) | S C_ a } e. _V ) -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) : No typesetting found for |- ( ( F e. _V /\ S e. _V /\ |^| { a e. ( SubDRing ` F ) | S C_ a } e. _V ) -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-
23 4 7 14 22 syl3anc Could not format ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) : No typesetting found for |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-