Metamath Proof Explorer


Theorem fldidom

Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015)

Ref Expression
Assertion fldidom R Field R IDomn

Proof

Step Hyp Ref Expression
1 isfld R Field R DivRing R CRing
2 1 simprbi R Field R CRing
3 1 simplbi R Field R DivRing
4 drngdomn R DivRing R Domn
5 3 4 syl R Field R Domn
6 isidom R IDomn R CRing R Domn
7 2 5 6 sylanbrc R Field R IDomn