Metamath Proof Explorer


Theorem fldiv

Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008)

Ref Expression
Assertion fldiv A N A N = A N

Proof

Step Hyp Ref Expression
1 eqid A = A
2 eqid A A = A A
3 1 2 intfrac2 A 0 A A A A < 1 A = A + A - A
4 3 simp3d A A = A + A - A
5 4 adantr A N A = A + A - A
6 5 oveq1d A N A N = A + A - A N
7 reflcl A A
8 7 recnd A A
9 resubcl A A A A
10 7 9 mpdan A A A
11 10 recnd A A A
12 nncn N N
13 nnne0 N N 0
14 12 13 jca N N N 0
15 divdir A A A N N 0 A + A - A N = A N + A A N
16 8 11 14 15 syl2an3an A N A + A - A N = A N + A A N
17 6 16 eqtrd A N A N = A N + A A N
18 flcl A A
19 eqid A N = A N
20 eqid A N A N = A N A N
21 19 20 intfracq A N 0 A N A N A N A N N 1 N A N = A N + A N - A N
22 21 simp3d A N A N = A N + A N - A N
23 18 22 sylan A N A N = A N + A N - A N
24 23 oveq1d A N A N + A A N = A N + A N A N + A A N
25 7 adantr A N A
26 nnre N N
27 26 adantl A N N
28 13 adantl A N N 0
29 25 27 28 redivcld A N A N
30 reflcl A N A N
31 29 30 syl A N A N
32 31 recnd A N A N
33 29 31 resubcld A N A N A N
34 33 recnd A N A N A N
35 10 adantr A N A A
36 35 27 28 redivcld A N A A N
37 36 recnd A N A A N
38 32 34 37 addassd A N A N + A N A N + A A N = A N + A N A N + A A N
39 17 24 38 3eqtrd A N A N = A N + A N A N + A A N
40 39 fveq2d A N A N = A N + A N A N + A A N
41 21 simp1d A N 0 A N A N
42 18 41 sylan A N 0 A N A N
43 fracge0 A 0 A A
44 10 43 jca A A A 0 A A
45 nngt0 N 0 < N
46 26 45 jca N N 0 < N
47 divge0 A A 0 A A N 0 < N 0 A A N
48 44 46 47 syl2an A N 0 A A N
49 33 36 42 48 addge0d A N 0 A N - A N + A A N
50 peano2rem N N 1
51 26 50 syl N N 1
52 51 26 13 redivcld N N 1 N
53 nnrecre N 1 N
54 52 53 jca N N 1 N 1 N
55 54 adantl A N N 1 N 1 N
56 33 36 55 jca31 A N A N A N A A N N 1 N 1 N
57 21 simp2d A N A N A N N 1 N
58 18 57 sylan A N A N A N N 1 N
59 fraclt1 A A A < 1
60 59 adantr A N A A < 1
61 1re 1
62 ltdiv1 A A 1 N 0 < N A A < 1 A A N < 1 N
63 61 62 mp3an2 A A N 0 < N A A < 1 A A N < 1 N
64 10 46 63 syl2an A N A A < 1 A A N < 1 N
65 60 64 mpbid A N A A N < 1 N
66 58 65 jca A N A N A N N 1 N A A N < 1 N
67 leltadd A N A N A A N N 1 N 1 N A N A N N 1 N A A N < 1 N A N - A N + A A N < N 1 N + 1 N
68 56 66 67 sylc A N A N - A N + A A N < N 1 N + 1 N
69 ax-1cn 1
70 npcan N 1 N - 1 + 1 = N
71 12 69 70 sylancl N N - 1 + 1 = N
72 71 oveq1d N N - 1 + 1 N = N N
73 51 recnd N N 1
74 divdir N 1 1 N N 0 N - 1 + 1 N = N 1 N + 1 N
75 69 74 mp3an2 N 1 N N 0 N - 1 + 1 N = N 1 N + 1 N
76 73 12 13 75 syl12anc N N - 1 + 1 N = N 1 N + 1 N
77 12 13 dividd N N N = 1
78 72 76 77 3eqtr3d N N 1 N + 1 N = 1
79 78 adantl A N N 1 N + 1 N = 1
80 68 79 breqtrd A N A N - A N + A A N < 1
81 29 flcld A N A N
82 33 36 readdcld A N A N - A N + A A N
83 flbi2 A N A N - A N + A A N A N + A N A N + A A N = A N 0 A N - A N + A A N A N - A N + A A N < 1
84 81 82 83 syl2anc A N A N + A N A N + A A N = A N 0 A N - A N + A A N A N - A N + A A N < 1
85 49 80 84 mpbir2and A N A N + A N A N + A A N = A N
86 40 85 eqtr2d A N A N = A N