Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
1 2
|
intfrac2 |
|
4 |
3
|
simp3d |
|
5 |
4
|
adantr |
|
6 |
5
|
oveq1d |
|
7 |
|
reflcl |
|
8 |
7
|
recnd |
|
9 |
|
resubcl |
|
10 |
7 9
|
mpdan |
|
11 |
10
|
recnd |
|
12 |
|
nncn |
|
13 |
|
nnne0 |
|
14 |
12 13
|
jca |
|
15 |
|
divdir |
|
16 |
8 11 14 15
|
syl2an3an |
|
17 |
6 16
|
eqtrd |
|
18 |
|
flcl |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
19 20
|
intfracq |
|
22 |
21
|
simp3d |
|
23 |
18 22
|
sylan |
|
24 |
23
|
oveq1d |
|
25 |
7
|
adantr |
|
26 |
|
nnre |
|
27 |
26
|
adantl |
|
28 |
13
|
adantl |
|
29 |
25 27 28
|
redivcld |
|
30 |
|
reflcl |
|
31 |
29 30
|
syl |
|
32 |
31
|
recnd |
|
33 |
29 31
|
resubcld |
|
34 |
33
|
recnd |
|
35 |
10
|
adantr |
|
36 |
35 27 28
|
redivcld |
|
37 |
36
|
recnd |
|
38 |
32 34 37
|
addassd |
|
39 |
17 24 38
|
3eqtrd |
|
40 |
39
|
fveq2d |
|
41 |
21
|
simp1d |
|
42 |
18 41
|
sylan |
|
43 |
|
fracge0 |
|
44 |
10 43
|
jca |
|
45 |
|
nngt0 |
|
46 |
26 45
|
jca |
|
47 |
|
divge0 |
|
48 |
44 46 47
|
syl2an |
|
49 |
33 36 42 48
|
addge0d |
|
50 |
|
peano2rem |
|
51 |
26 50
|
syl |
|
52 |
51 26 13
|
redivcld |
|
53 |
|
nnrecre |
|
54 |
52 53
|
jca |
|
55 |
54
|
adantl |
|
56 |
33 36 55
|
jca31 |
|
57 |
21
|
simp2d |
|
58 |
18 57
|
sylan |
|
59 |
|
fraclt1 |
|
60 |
59
|
adantr |
|
61 |
|
1re |
|
62 |
|
ltdiv1 |
|
63 |
61 62
|
mp3an2 |
|
64 |
10 46 63
|
syl2an |
|
65 |
60 64
|
mpbid |
|
66 |
58 65
|
jca |
|
67 |
|
leltadd |
|
68 |
56 66 67
|
sylc |
|
69 |
|
ax-1cn |
|
70 |
|
npcan |
|
71 |
12 69 70
|
sylancl |
|
72 |
71
|
oveq1d |
|
73 |
51
|
recnd |
|
74 |
|
divdir |
|
75 |
69 74
|
mp3an2 |
|
76 |
73 12 13 75
|
syl12anc |
|
77 |
12 13
|
dividd |
|
78 |
72 76 77
|
3eqtr3d |
|
79 |
78
|
adantl |
|
80 |
68 79
|
breqtrd |
|
81 |
29
|
flcld |
|
82 |
33 36
|
readdcld |
|
83 |
|
flbi2 |
|
84 |
81 82 83
|
syl2anc |
|
85 |
49 80 84
|
mpbir2and |
|
86 |
40 85
|
eqtr2d |
|