Metamath Proof Explorer


Theorem fldiv4lem1div2uz2

Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion fldiv4lem1div2uz2 N 2 N 4 N 1 2

Proof

Step Hyp Ref Expression
1 eluzelz N 2 N
2 zre N N
3 id N N
4 4re 4
5 4 a1i N 4
6 4ne0 4 0
7 6 a1i N 4 0
8 3 5 7 redivcld N N 4
9 flle N 4 N 4 N 4
10 1 2 8 9 4syl N 2 N 4 N 4
11 1red N 2 1
12 eluzelre N 2 N
13 rehalfcl N N 2
14 1 2 13 3syl N 2 N 2
15 2rp 2 +
16 15 a1i N 2 2 +
17 eluzle N 2 2 N
18 divge1 2 + N 2 N 1 N 2
19 16 12 17 18 syl3anc N 2 1 N 2
20 eluzelcn N 2 N
21 subhalfhalf N N N 2 = N 2
22 20 21 syl N 2 N N 2 = N 2
23 19 22 breqtrrd N 2 1 N N 2
24 11 12 14 23 lesubd N 2 N 2 N 1
25 2t2e4 2 2 = 4
26 25 eqcomi 4 = 2 2
27 26 a1i N 2 4 = 2 2
28 27 oveq2d N 2 N 4 = N 2 2
29 2cnne0 2 2 0
30 29 a1i N 2 2 2 0
31 divdiv1 N 2 2 0 2 2 0 N 2 2 = N 2 2
32 20 30 30 31 syl3anc N 2 N 2 2 = N 2 2
33 28 32 eqtr4d N 2 N 4 = N 2 2
34 33 breq1d N 2 N 4 N 1 2 N 2 2 N 1 2
35 peano2rem N N 1
36 12 35 syl N 2 N 1
37 14 36 16 lediv1d N 2 N 2 N 1 N 2 2 N 1 2
38 34 37 bitr4d N 2 N 4 N 1 2 N 2 N 1
39 24 38 mpbird N 2 N 4 N 1 2
40 8 flcld N N 4
41 40 zred N N 4
42 35 rehalfcld N N 1 2
43 41 8 42 3jca N N 4 N 4 N 1 2
44 letr N 4 N 4 N 1 2 N 4 N 4 N 4 N 1 2 N 4 N 1 2
45 1 2 43 44 4syl N 2 N 4 N 4 N 4 N 1 2 N 4 N 1 2
46 10 39 45 mp2and N 2 N 4 N 1 2