Metamath Proof Explorer


Theorem fldiv4lem1div2uz2

Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion fldiv4lem1div2uz2 N 2 N 4 N 1 2

Proof

Step Hyp Ref Expression
1 eluzelz N 2 N
2 zre N N
3 id N N
4 4re 4
5 4 a1i N 4
6 4ne0 4 0
7 6 a1i N 4 0
8 3 5 7 redivcld N N 4
9 2 8 syl N N 4
10 flle N 4 N 4 N 4
11 1 9 10 3syl N 2 N 4 N 4
12 1red N 2 1
13 eluzelre N 2 N
14 rehalfcl N N 2
15 1 2 14 3syl N 2 N 2
16 2rp 2 +
17 16 a1i N 2 2 +
18 eluzle N 2 2 N
19 divge1 2 + N 2 N 1 N 2
20 17 13 18 19 syl3anc N 2 1 N 2
21 eluzelcn N 2 N
22 subhalfhalf N N N 2 = N 2
23 21 22 syl N 2 N N 2 = N 2
24 20 23 breqtrrd N 2 1 N N 2
25 12 13 15 24 lesubd N 2 N 2 N 1
26 2t2e4 2 2 = 4
27 26 eqcomi 4 = 2 2
28 27 a1i N 2 4 = 2 2
29 28 oveq2d N 2 N 4 = N 2 2
30 2cnne0 2 2 0
31 30 a1i N 2 2 2 0
32 divdiv1 N 2 2 0 2 2 0 N 2 2 = N 2 2
33 21 31 31 32 syl3anc N 2 N 2 2 = N 2 2
34 29 33 eqtr4d N 2 N 4 = N 2 2
35 34 breq1d N 2 N 4 N 1 2 N 2 2 N 1 2
36 peano2rem N N 1
37 13 36 syl N 2 N 1
38 15 37 17 lediv1d N 2 N 2 N 1 N 2 2 N 1 2
39 35 38 bitr4d N 2 N 4 N 1 2 N 2 N 1
40 25 39 mpbird N 2 N 4 N 1 2
41 8 flcld N N 4
42 41 zred N N 4
43 36 rehalfcld N N 1 2
44 42 8 43 3jca N N 4 N 4 N 1 2
45 1 2 44 3syl N 2 N 4 N 4 N 1 2
46 letr N 4 N 4 N 1 2 N 4 N 4 N 4 N 1 2 N 4 N 1 2
47 45 46 syl N 2 N 4 N 4 N 4 N 1 2 N 4 N 1 2
48 11 40 47 mp2and N 2 N 4 N 1 2