Metamath Proof Explorer


Theorem fldiv4p1lem1div2

Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021)

Ref Expression
Assertion fldiv4p1lem1div2 N = 3 N 5 N 4 + 1 N 1 2

Proof

Step Hyp Ref Expression
1 1le1 1 1
2 1 a1i N = 3 1 1
3 fvoveq1 N = 3 N 4 = 3 4
4 3lt4 3 < 4
5 3nn0 3 0
6 4nn 4
7 divfl0 3 0 4 3 < 4 3 4 = 0
8 5 6 7 mp2an 3 < 4 3 4 = 0
9 4 8 mpbi 3 4 = 0
10 3 9 eqtrdi N = 3 N 4 = 0
11 10 oveq1d N = 3 N 4 + 1 = 0 + 1
12 0p1e1 0 + 1 = 1
13 11 12 eqtrdi N = 3 N 4 + 1 = 1
14 oveq1 N = 3 N 1 = 3 1
15 3m1e2 3 1 = 2
16 14 15 eqtrdi N = 3 N 1 = 2
17 16 oveq1d N = 3 N 1 2 = 2 2
18 2div2e1 2 2 = 1
19 17 18 eqtrdi N = 3 N 1 2 = 1
20 2 13 19 3brtr4d N = 3 N 4 + 1 N 1 2
21 uzp1 N 5 N = 5 N 5 + 1
22 2re 2
23 22 leidi 2 2
24 23 a1i N = 5 2 2
25 fvoveq1 N = 5 N 4 = 5 4
26 df-5 5 = 4 + 1
27 26 oveq1i 5 4 = 4 + 1 4
28 4cn 4
29 ax-1cn 1
30 4ne0 4 0
31 28 29 28 30 divdiri 4 + 1 4 = 4 4 + 1 4
32 28 30 dividi 4 4 = 1
33 32 oveq1i 4 4 + 1 4 = 1 + 1 4
34 27 31 33 3eqtri 5 4 = 1 + 1 4
35 34 fveq2i 5 4 = 1 + 1 4
36 1re 1
37 0le1 0 1
38 4re 4
39 4pos 0 < 4
40 divge0 1 0 1 4 0 < 4 0 1 4
41 36 37 38 39 40 mp4an 0 1 4
42 1lt4 1 < 4
43 recgt1 4 0 < 4 1 < 4 1 4 < 1
44 38 39 43 mp2an 1 < 4 1 4 < 1
45 42 44 mpbi 1 4 < 1
46 1z 1
47 38 30 rereccli 1 4
48 flbi2 1 1 4 1 + 1 4 = 1 0 1 4 1 4 < 1
49 46 47 48 mp2an 1 + 1 4 = 1 0 1 4 1 4 < 1
50 41 45 49 mpbir2an 1 + 1 4 = 1
51 35 50 eqtri 5 4 = 1
52 25 51 eqtrdi N = 5 N 4 = 1
53 52 oveq1d N = 5 N 4 + 1 = 1 + 1
54 1p1e2 1 + 1 = 2
55 53 54 eqtrdi N = 5 N 4 + 1 = 2
56 oveq1 N = 5 N 1 = 5 1
57 5m1e4 5 1 = 4
58 56 57 eqtrdi N = 5 N 1 = 4
59 58 oveq1d N = 5 N 1 2 = 4 2
60 4d2e2 4 2 = 2
61 59 60 eqtrdi N = 5 N 1 2 = 2
62 24 55 61 3brtr4d N = 5 N 4 + 1 N 1 2
63 eluz2 N 6 6 N 6 N
64 zre N N
65 id N N
66 38 a1i N 4
67 30 a1i N 4 0
68 65 66 67 redivcld N N 4
69 flle N 4 N 4 N 4
70 64 68 69 3syl N N 4 N 4
71 70 adantr N 6 N N 4 N 4
72 68 flcld N N 4
73 72 zred N N 4
74 36 a1i N 1
75 73 68 74 3jca N N 4 N 4 1
76 64 75 syl N N 4 N 4 1
77 76 adantr N 6 N N 4 N 4 1
78 leadd1 N 4 N 4 1 N 4 N 4 N 4 + 1 N 4 + 1
79 77 78 syl N 6 N N 4 N 4 N 4 + 1 N 4 + 1
80 71 79 mpbid N 6 N N 4 + 1 N 4 + 1
81 div4p1lem1div2 N 6 N N 4 + 1 N 1 2
82 64 81 sylan N 6 N N 4 + 1 N 1 2
83 peano2re N 4 N 4 + 1
84 73 83 syl N N 4 + 1
85 peano2re N 4 N 4 + 1
86 68 85 syl N N 4 + 1
87 peano2rem N N 1
88 87 rehalfcld N N 1 2
89 84 86 88 3jca N N 4 + 1 N 4 + 1 N 1 2
90 64 89 syl N N 4 + 1 N 4 + 1 N 1 2
91 90 adantr N 6 N N 4 + 1 N 4 + 1 N 1 2
92 letr N 4 + 1 N 4 + 1 N 1 2 N 4 + 1 N 4 + 1 N 4 + 1 N 1 2 N 4 + 1 N 1 2
93 91 92 syl N 6 N N 4 + 1 N 4 + 1 N 4 + 1 N 1 2 N 4 + 1 N 1 2
94 80 82 93 mp2and N 6 N N 4 + 1 N 1 2
95 94 3adant1 6 N 6 N N 4 + 1 N 1 2
96 63 95 sylbi N 6 N 4 + 1 N 1 2
97 5p1e6 5 + 1 = 6
98 97 fveq2i 5 + 1 = 6
99 96 98 eleq2s N 5 + 1 N 4 + 1 N 1 2
100 62 99 jaoi N = 5 N 5 + 1 N 4 + 1 N 1 2
101 21 100 syl N 5 N 4 + 1 N 1 2
102 20 101 jaoi N = 3 N 5 N 4 + 1 N 1 2