Metamath Proof Explorer


Theorem fldivndvdslt

Description: The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021)

Ref Expression
Assertion fldivndvdslt K L L 0 ¬ L K K L < K L

Proof

Step Hyp Ref Expression
1 zre K K
2 1 adantr K L L 0 K
3 zre L L
4 3 ad2antrl K L L 0 L
5 simprr K L L 0 L 0
6 2 4 5 redivcld K L L 0 K L
7 6 3adant3 K L L 0 ¬ L K K L
8 simprl K L L 0 L
9 simpl K L L 0 K
10 dvdsval2 L L 0 K L K K L
11 8 5 9 10 syl3anc K L L 0 L K K L
12 11 notbid K L L 0 ¬ L K ¬ K L
13 12 biimp3a K L L 0 ¬ L K ¬ K L
14 flltnz K L ¬ K L K L < K L
15 7 13 14 syl2anc K L L 0 ¬ L K K L < K L